Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6148 serge 1
/*
2
 * AAC Spectral Band Replication decoding functions
3
 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4
 * Copyright (c) 2009-2010 Alex Converse 
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
 
23
/**
24
 * @file
25
 * AAC Spectral Band Replication decoding functions
26
 * @author Robert Swain ( rob opendot cl )
27
 */
28
 
29
#include "aac.h"
30
#include "sbr.h"
31
#include "aacsbr.h"
32
#include "aacsbrdata.h"
33
#include "fft.h"
34
#include "aacps.h"
35
#include "sbrdsp.h"
36
#include "libavutil/internal.h"
37
#include "libavutil/libm.h"
38
#include "libavutil/avassert.h"
39
 
40
#include 
41
#include 
42
#include 
43
 
44
#define ENVELOPE_ADJUSTMENT_OFFSET 2
45
#define NOISE_FLOOR_OFFSET 6.0f
46
 
47
#if ARCH_MIPS
48
#include "mips/aacsbr_mips.h"
49
#endif /* ARCH_MIPS */
50
 
51
/**
52
 * SBR VLC tables
53
 */
54
enum {
55
    T_HUFFMAN_ENV_1_5DB,
56
    F_HUFFMAN_ENV_1_5DB,
57
    T_HUFFMAN_ENV_BAL_1_5DB,
58
    F_HUFFMAN_ENV_BAL_1_5DB,
59
    T_HUFFMAN_ENV_3_0DB,
60
    F_HUFFMAN_ENV_3_0DB,
61
    T_HUFFMAN_ENV_BAL_3_0DB,
62
    F_HUFFMAN_ENV_BAL_3_0DB,
63
    T_HUFFMAN_NOISE_3_0DB,
64
    T_HUFFMAN_NOISE_BAL_3_0DB,
65
};
66
 
67
/**
68
 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
69
 */
70
enum {
71
    FIXFIX,
72
    FIXVAR,
73
    VARFIX,
74
    VARVAR,
75
};
76
 
77
enum {
78
    EXTENSION_ID_PS = 2,
79
};
80
 
81
static VLC vlc_sbr[10];
82
static const int8_t vlc_sbr_lav[10] =
83
    { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
84
 
85
#define SBR_INIT_VLC_STATIC(num, size) \
86
    INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size,     \
87
                    sbr_tmp[num].sbr_bits ,                      1,                      1, \
88
                    sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
89
                    size)
90
 
91
#define SBR_VLC_ROW(name) \
92
    { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
93
 
94
static void aacsbr_func_ptr_init(AACSBRContext *c);
95
 
96
av_cold void ff_aac_sbr_init(void)
97
{
98
    int n;
99
    static const struct {
100
        const void *sbr_codes, *sbr_bits;
101
        const unsigned int table_size, elem_size;
102
    } sbr_tmp[] = {
103
        SBR_VLC_ROW(t_huffman_env_1_5dB),
104
        SBR_VLC_ROW(f_huffman_env_1_5dB),
105
        SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
106
        SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
107
        SBR_VLC_ROW(t_huffman_env_3_0dB),
108
        SBR_VLC_ROW(f_huffman_env_3_0dB),
109
        SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
110
        SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
111
        SBR_VLC_ROW(t_huffman_noise_3_0dB),
112
        SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
113
    };
114
 
115
    // SBR VLC table initialization
116
    SBR_INIT_VLC_STATIC(0, 1098);
117
    SBR_INIT_VLC_STATIC(1, 1092);
118
    SBR_INIT_VLC_STATIC(2, 768);
119
    SBR_INIT_VLC_STATIC(3, 1026);
120
    SBR_INIT_VLC_STATIC(4, 1058);
121
    SBR_INIT_VLC_STATIC(5, 1052);
122
    SBR_INIT_VLC_STATIC(6, 544);
123
    SBR_INIT_VLC_STATIC(7, 544);
124
    SBR_INIT_VLC_STATIC(8, 592);
125
    SBR_INIT_VLC_STATIC(9, 512);
126
 
127
    for (n = 1; n < 320; n++)
128
        sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
129
    sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
130
    sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
131
 
132
    for (n = 0; n < 320; n++)
133
        sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
134
 
135
    ff_ps_init();
136
}
137
 
138
/** Places SBR in pure upsampling mode. */
139
static void sbr_turnoff(SpectralBandReplication *sbr) {
140
    sbr->start = 0;
141
    // Init defults used in pure upsampling mode
142
    sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
143
    sbr->m[1] = 0;
144
    // Reset values for first SBR header
145
    sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
146
    memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
147
}
148
 
149
av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
150
{
151
    if(sbr->mdct.mdct_bits)
152
        return;
153
    sbr->kx[0] = sbr->kx[1];
154
    sbr_turnoff(sbr);
155
    sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
156
    sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
157
    /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
158
     * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
159
     * and scale back down at synthesis. */
160
    ff_mdct_init(&sbr->mdct,     7, 1, 1.0 / (64 * 32768.0));
161
    ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
162
    ff_ps_ctx_init(&sbr->ps);
163
    ff_sbrdsp_init(&sbr->dsp);
164
    aacsbr_func_ptr_init(&sbr->c);
165
}
166
 
167
av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
168
{
169
    ff_mdct_end(&sbr->mdct);
170
    ff_mdct_end(&sbr->mdct_ana);
171
}
172
 
173
static int qsort_comparison_function_int16(const void *a, const void *b)
174
{
175
    return *(const int16_t *)a - *(const int16_t *)b;
176
}
177
 
178
static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
179
{
180
    int i;
181
    for (i = 0; i <= last_el; i++)
182
        if (table[i] == needle)
183
            return 1;
184
    return 0;
185
}
186
 
187
/// Limiter Frequency Band Table (14496-3 sp04 p198)
188
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
189
{
190
    int k;
191
    if (sbr->bs_limiter_bands > 0) {
192
        static const float bands_warped[3] = { 1.32715174233856803909f,   //2^(0.49/1.2)
193
                                               1.18509277094158210129f,   //2^(0.49/2)
194
                                               1.11987160404675912501f }; //2^(0.49/3)
195
        const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
196
        int16_t patch_borders[7];
197
        uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
198
 
199
        patch_borders[0] = sbr->kx[1];
200
        for (k = 1; k <= sbr->num_patches; k++)
201
            patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
202
 
203
        memcpy(sbr->f_tablelim, sbr->f_tablelow,
204
               (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
205
        if (sbr->num_patches > 1)
206
            memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
207
                   (sbr->num_patches - 1) * sizeof(patch_borders[0]));
208
 
209
        qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
210
              sizeof(sbr->f_tablelim[0]),
211
              qsort_comparison_function_int16);
212
 
213
        sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
214
        while (out < sbr->f_tablelim + sbr->n_lim) {
215
            if (*in >= *out * lim_bands_per_octave_warped) {
216
                *++out = *in++;
217
            } else if (*in == *out ||
218
                !in_table_int16(patch_borders, sbr->num_patches, *in)) {
219
                in++;
220
                sbr->n_lim--;
221
            } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
222
                *out = *in++;
223
                sbr->n_lim--;
224
            } else {
225
                *++out = *in++;
226
            }
227
        }
228
    } else {
229
        sbr->f_tablelim[0] = sbr->f_tablelow[0];
230
        sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
231
        sbr->n_lim = 1;
232
    }
233
}
234
 
235
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
236
{
237
    unsigned int cnt = get_bits_count(gb);
238
    uint8_t bs_header_extra_1;
239
    uint8_t bs_header_extra_2;
240
    int old_bs_limiter_bands = sbr->bs_limiter_bands;
241
    SpectrumParameters old_spectrum_params;
242
 
243
    sbr->start = 1;
244
 
245
    // Save last spectrum parameters variables to compare to new ones
246
    memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
247
 
248
    sbr->bs_amp_res_header              = get_bits1(gb);
249
    sbr->spectrum_params.bs_start_freq  = get_bits(gb, 4);
250
    sbr->spectrum_params.bs_stop_freq   = get_bits(gb, 4);
251
    sbr->spectrum_params.bs_xover_band  = get_bits(gb, 3);
252
                                          skip_bits(gb, 2); // bs_reserved
253
 
254
    bs_header_extra_1 = get_bits1(gb);
255
    bs_header_extra_2 = get_bits1(gb);
256
 
257
    if (bs_header_extra_1) {
258
        sbr->spectrum_params.bs_freq_scale  = get_bits(gb, 2);
259
        sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
260
        sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
261
    } else {
262
        sbr->spectrum_params.bs_freq_scale  = 2;
263
        sbr->spectrum_params.bs_alter_scale = 1;
264
        sbr->spectrum_params.bs_noise_bands = 2;
265
    }
266
 
267
    // Check if spectrum parameters changed
268
    if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
269
        sbr->reset = 1;
270
 
271
    if (bs_header_extra_2) {
272
        sbr->bs_limiter_bands  = get_bits(gb, 2);
273
        sbr->bs_limiter_gains  = get_bits(gb, 2);
274
        sbr->bs_interpol_freq  = get_bits1(gb);
275
        sbr->bs_smoothing_mode = get_bits1(gb);
276
    } else {
277
        sbr->bs_limiter_bands  = 2;
278
        sbr->bs_limiter_gains  = 2;
279
        sbr->bs_interpol_freq  = 1;
280
        sbr->bs_smoothing_mode = 1;
281
    }
282
 
283
    if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
284
        sbr_make_f_tablelim(sbr);
285
 
286
    return get_bits_count(gb) - cnt;
287
}
288
 
289
static int array_min_int16(const int16_t *array, int nel)
290
{
291
    int i, min = array[0];
292
    for (i = 1; i < nel; i++)
293
        min = FFMIN(array[i], min);
294
    return min;
295
}
296
 
297
static void make_bands(int16_t* bands, int start, int stop, int num_bands)
298
{
299
    int k, previous, present;
300
    float base, prod;
301
 
302
    base = powf((float)stop / start, 1.0f / num_bands);
303
    prod = start;
304
    previous = start;
305
 
306
    for (k = 0; k < num_bands-1; k++) {
307
        prod *= base;
308
        present  = lrintf(prod);
309
        bands[k] = present - previous;
310
        previous = present;
311
    }
312
    bands[num_bands-1] = stop - previous;
313
}
314
 
315
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
316
{
317
    // Requirements (14496-3 sp04 p205)
318
    if (n_master <= 0) {
319
        av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
320
        return -1;
321
    }
322
    if (bs_xover_band >= n_master) {
323
        av_log(avctx, AV_LOG_ERROR,
324
               "Invalid bitstream, crossover band index beyond array bounds: %d\n",
325
               bs_xover_band);
326
        return -1;
327
    }
328
    return 0;
329
}
330
 
331
/// Master Frequency Band Table (14496-3 sp04 p194)
332
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
333
                             SpectrumParameters *spectrum)
334
{
335
    unsigned int temp, max_qmf_subbands;
336
    unsigned int start_min, stop_min;
337
    int k;
338
    const int8_t *sbr_offset_ptr;
339
    int16_t stop_dk[13];
340
 
341
    if (sbr->sample_rate < 32000) {
342
        temp = 3000;
343
    } else if (sbr->sample_rate < 64000) {
344
        temp = 4000;
345
    } else
346
        temp = 5000;
347
 
348
    switch (sbr->sample_rate) {
349
    case 16000:
350
        sbr_offset_ptr = sbr_offset[0];
351
        break;
352
    case 22050:
353
        sbr_offset_ptr = sbr_offset[1];
354
        break;
355
    case 24000:
356
        sbr_offset_ptr = sbr_offset[2];
357
        break;
358
    case 32000:
359
        sbr_offset_ptr = sbr_offset[3];
360
        break;
361
    case 44100: case 48000: case 64000:
362
        sbr_offset_ptr = sbr_offset[4];
363
        break;
364
    case 88200: case 96000: case 128000: case 176400: case 192000:
365
        sbr_offset_ptr = sbr_offset[5];
366
        break;
367
    default:
368
        av_log(ac->avctx, AV_LOG_ERROR,
369
               "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
370
        return -1;
371
    }
372
 
373
    start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
374
    stop_min  = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
375
 
376
    sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
377
 
378
    if (spectrum->bs_stop_freq < 14) {
379
        sbr->k[2] = stop_min;
380
        make_bands(stop_dk, stop_min, 64, 13);
381
        qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
382
        for (k = 0; k < spectrum->bs_stop_freq; k++)
383
            sbr->k[2] += stop_dk[k];
384
    } else if (spectrum->bs_stop_freq == 14) {
385
        sbr->k[2] = 2*sbr->k[0];
386
    } else if (spectrum->bs_stop_freq == 15) {
387
        sbr->k[2] = 3*sbr->k[0];
388
    } else {
389
        av_log(ac->avctx, AV_LOG_ERROR,
390
               "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
391
        return -1;
392
    }
393
    sbr->k[2] = FFMIN(64, sbr->k[2]);
394
 
395
    // Requirements (14496-3 sp04 p205)
396
    if (sbr->sample_rate <= 32000) {
397
        max_qmf_subbands = 48;
398
    } else if (sbr->sample_rate == 44100) {
399
        max_qmf_subbands = 35;
400
    } else if (sbr->sample_rate >= 48000)
401
        max_qmf_subbands = 32;
402
    else
403
        av_assert0(0);
404
 
405
    if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
406
        av_log(ac->avctx, AV_LOG_ERROR,
407
               "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
408
        return -1;
409
    }
410
 
411
    if (!spectrum->bs_freq_scale) {
412
        int dk, k2diff;
413
 
414
        dk = spectrum->bs_alter_scale + 1;
415
        sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
416
        if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
417
            return -1;
418
 
419
        for (k = 1; k <= sbr->n_master; k++)
420
            sbr->f_master[k] = dk;
421
 
422
        k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
423
        if (k2diff < 0) {
424
            sbr->f_master[1]--;
425
            sbr->f_master[2]-= (k2diff < -1);
426
        } else if (k2diff) {
427
            sbr->f_master[sbr->n_master]++;
428
        }
429
 
430
        sbr->f_master[0] = sbr->k[0];
431
        for (k = 1; k <= sbr->n_master; k++)
432
            sbr->f_master[k] += sbr->f_master[k - 1];
433
 
434
    } else {
435
        int half_bands = 7 - spectrum->bs_freq_scale;      // bs_freq_scale  = {1,2,3}
436
        int two_regions, num_bands_0;
437
        int vdk0_max, vdk1_min;
438
        int16_t vk0[49];
439
 
440
        if (49 * sbr->k[2] > 110 * sbr->k[0]) {
441
            two_regions = 1;
442
            sbr->k[1] = 2 * sbr->k[0];
443
        } else {
444
            two_regions = 0;
445
            sbr->k[1] = sbr->k[2];
446
        }
447
 
448
        num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
449
 
450
        if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
451
            av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
452
            return -1;
453
        }
454
 
455
        vk0[0] = 0;
456
 
457
        make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
458
 
459
        qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
460
        vdk0_max = vk0[num_bands_0];
461
 
462
        vk0[0] = sbr->k[0];
463
        for (k = 1; k <= num_bands_0; k++) {
464
            if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
465
                av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
466
                return -1;
467
            }
468
            vk0[k] += vk0[k-1];
469
        }
470
 
471
        if (two_regions) {
472
            int16_t vk1[49];
473
            float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
474
                                                     : 1.0f; // bs_alter_scale = {0,1}
475
            int num_bands_1 = lrintf(half_bands * invwarp *
476
                                     log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
477
 
478
            make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
479
 
480
            vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
481
 
482
            if (vdk1_min < vdk0_max) {
483
                int change;
484
                qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
485
                change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
486
                vk1[1]           += change;
487
                vk1[num_bands_1] -= change;
488
            }
489
 
490
            qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
491
 
492
            vk1[0] = sbr->k[1];
493
            for (k = 1; k <= num_bands_1; k++) {
494
                if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
495
                    av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
496
                    return -1;
497
                }
498
                vk1[k] += vk1[k-1];
499
            }
500
 
501
            sbr->n_master = num_bands_0 + num_bands_1;
502
            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
503
                return -1;
504
            memcpy(&sbr->f_master[0],               vk0,
505
                   (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
506
            memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
507
                    num_bands_1      * sizeof(sbr->f_master[0]));
508
 
509
        } else {
510
            sbr->n_master = num_bands_0;
511
            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
512
                return -1;
513
            memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
514
        }
515
    }
516
 
517
    return 0;
518
}
519
 
520
/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
521
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
522
{
523
    int i, k, sb = 0;
524
    int msb = sbr->k[0];
525
    int usb = sbr->kx[1];
526
    int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
527
 
528
    sbr->num_patches = 0;
529
 
530
    if (goal_sb < sbr->kx[1] + sbr->m[1]) {
531
        for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
532
    } else
533
        k = sbr->n_master;
534
 
535
    do {
536
        int odd = 0;
537
        for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
538
            sb = sbr->f_master[i];
539
            odd = (sb + sbr->k[0]) & 1;
540
        }
541
 
542
        // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
543
        // After this check the final number of patches can still be six which is
544
        // illegal however the Coding Technologies decoder check stream has a final
545
        // count of 6 patches
546
        if (sbr->num_patches > 5) {
547
            av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
548
            return -1;
549
        }
550
 
551
        sbr->patch_num_subbands[sbr->num_patches]  = FFMAX(sb - usb, 0);
552
        sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
553
 
554
        if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
555
            usb = sb;
556
            msb = sb;
557
            sbr->num_patches++;
558
        } else
559
            msb = sbr->kx[1];
560
 
561
        if (sbr->f_master[k] - sb < 3)
562
            k = sbr->n_master;
563
    } while (sb != sbr->kx[1] + sbr->m[1]);
564
 
565
    if (sbr->num_patches > 1 && sbr->patch_num_subbands[sbr->num_patches-1] < 3)
566
        sbr->num_patches--;
567
 
568
    return 0;
569
}
570
 
571
/// Derived Frequency Band Tables (14496-3 sp04 p197)
572
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
573
{
574
    int k, temp;
575
 
576
    sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
577
    sbr->n[0] = (sbr->n[1] + 1) >> 1;
578
 
579
    memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
580
           (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
581
    sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
582
    sbr->kx[1] = sbr->f_tablehigh[0];
583
 
584
    // Requirements (14496-3 sp04 p205)
585
    if (sbr->kx[1] + sbr->m[1] > 64) {
586
        av_log(ac->avctx, AV_LOG_ERROR,
587
               "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
588
        return -1;
589
    }
590
    if (sbr->kx[1] > 32) {
591
        av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
592
        return -1;
593
    }
594
 
595
    sbr->f_tablelow[0] = sbr->f_tablehigh[0];
596
    temp = sbr->n[1] & 1;
597
    for (k = 1; k <= sbr->n[0]; k++)
598
        sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
599
 
600
    sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
601
                               log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
602
    if (sbr->n_q > 5) {
603
        av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
604
        return -1;
605
    }
606
 
607
    sbr->f_tablenoise[0] = sbr->f_tablelow[0];
608
    temp = 0;
609
    for (k = 1; k <= sbr->n_q; k++) {
610
        temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
611
        sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
612
    }
613
 
614
    if (sbr_hf_calc_npatches(ac, sbr) < 0)
615
        return -1;
616
 
617
    sbr_make_f_tablelim(sbr);
618
 
619
    sbr->data[0].f_indexnoise = 0;
620
    sbr->data[1].f_indexnoise = 0;
621
 
622
    return 0;
623
}
624
 
625
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
626
                                              int elements)
627
{
628
    int i;
629
    for (i = 0; i < elements; i++) {
630
        vec[i] = get_bits1(gb);
631
    }
632
}
633
 
634
/** ceil(log2(index+1)) */
635
static const int8_t ceil_log2[] = {
636
    0, 1, 2, 2, 3, 3,
637
};
638
 
639
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
640
                         GetBitContext *gb, SBRData *ch_data)
641
{
642
    int i;
643
    unsigned bs_pointer = 0;
644
    // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
645
    int abs_bord_trail = 16;
646
    int num_rel_lead, num_rel_trail;
647
    unsigned bs_num_env_old = ch_data->bs_num_env;
648
 
649
    ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
650
    ch_data->bs_amp_res = sbr->bs_amp_res_header;
651
    ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
652
 
653
    switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
654
    case FIXFIX:
655
        ch_data->bs_num_env                 = 1 << get_bits(gb, 2);
656
        num_rel_lead                        = ch_data->bs_num_env - 1;
657
        if (ch_data->bs_num_env == 1)
658
            ch_data->bs_amp_res = 0;
659
 
660
        if (ch_data->bs_num_env > 4) {
661
            av_log(ac->avctx, AV_LOG_ERROR,
662
                   "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
663
                   ch_data->bs_num_env);
664
            return -1;
665
        }
666
 
667
        ch_data->t_env[0]                   = 0;
668
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
669
 
670
        abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
671
                   ch_data->bs_num_env;
672
        for (i = 0; i < num_rel_lead; i++)
673
            ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
674
 
675
        ch_data->bs_freq_res[1] = get_bits1(gb);
676
        for (i = 1; i < ch_data->bs_num_env; i++)
677
            ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
678
        break;
679
    case FIXVAR:
680
        abs_bord_trail                     += get_bits(gb, 2);
681
        num_rel_trail                       = get_bits(gb, 2);
682
        ch_data->bs_num_env                 = num_rel_trail + 1;
683
        ch_data->t_env[0]                   = 0;
684
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
685
 
686
        for (i = 0; i < num_rel_trail; i++)
687
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
688
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
689
 
690
        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
691
 
692
        for (i = 0; i < ch_data->bs_num_env; i++)
693
            ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
694
        break;
695
    case VARFIX:
696
        ch_data->t_env[0]                   = get_bits(gb, 2);
697
        num_rel_lead                        = get_bits(gb, 2);
698
        ch_data->bs_num_env                 = num_rel_lead + 1;
699
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
700
 
701
        for (i = 0; i < num_rel_lead; i++)
702
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
703
 
704
        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
705
 
706
        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
707
        break;
708
    case VARVAR:
709
        ch_data->t_env[0]                   = get_bits(gb, 2);
710
        abs_bord_trail                     += get_bits(gb, 2);
711
        num_rel_lead                        = get_bits(gb, 2);
712
        num_rel_trail                       = get_bits(gb, 2);
713
        ch_data->bs_num_env                 = num_rel_lead + num_rel_trail + 1;
714
 
715
        if (ch_data->bs_num_env > 5) {
716
            av_log(ac->avctx, AV_LOG_ERROR,
717
                   "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
718
                   ch_data->bs_num_env);
719
            return -1;
720
        }
721
 
722
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
723
 
724
        for (i = 0; i < num_rel_lead; i++)
725
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
726
        for (i = 0; i < num_rel_trail; i++)
727
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
728
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
729
 
730
        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
731
 
732
        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
733
        break;
734
    }
735
 
736
    if (bs_pointer > ch_data->bs_num_env + 1) {
737
        av_log(ac->avctx, AV_LOG_ERROR,
738
               "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
739
               bs_pointer);
740
        return -1;
741
    }
742
 
743
    for (i = 1; i <= ch_data->bs_num_env; i++) {
744
        if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
745
            av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
746
            return -1;
747
        }
748
    }
749
 
750
    ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
751
 
752
    ch_data->t_q[0]                     = ch_data->t_env[0];
753
    ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
754
    if (ch_data->bs_num_noise > 1) {
755
        unsigned int idx;
756
        if (ch_data->bs_frame_class == FIXFIX) {
757
            idx = ch_data->bs_num_env >> 1;
758
        } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
759
            idx = ch_data->bs_num_env - FFMAX((int)bs_pointer - 1, 1);
760
        } else { // VARFIX
761
            if (!bs_pointer)
762
                idx = 1;
763
            else if (bs_pointer == 1)
764
                idx = ch_data->bs_num_env - 1;
765
            else // bs_pointer > 1
766
                idx = bs_pointer - 1;
767
        }
768
        ch_data->t_q[1] = ch_data->t_env[idx];
769
    }
770
 
771
    ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
772
    ch_data->e_a[1] = -1;
773
    if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
774
        ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
775
    } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
776
        ch_data->e_a[1] = bs_pointer - 1;
777
 
778
    return 0;
779
}
780
 
781
static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
782
    //These variables are saved from the previous frame rather than copied
783
    dst->bs_freq_res[0]    = dst->bs_freq_res[dst->bs_num_env];
784
    dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
785
    dst->e_a[0]            = -(dst->e_a[1] != dst->bs_num_env);
786
 
787
    //These variables are read from the bitstream and therefore copied
788
    memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
789
    memcpy(dst->t_env,         src->t_env,         sizeof(dst->t_env));
790
    memcpy(dst->t_q,           src->t_q,           sizeof(dst->t_q));
791
    dst->bs_num_env        = src->bs_num_env;
792
    dst->bs_amp_res        = src->bs_amp_res;
793
    dst->bs_num_noise      = src->bs_num_noise;
794
    dst->bs_frame_class    = src->bs_frame_class;
795
    dst->e_a[1]            = src->e_a[1];
796
}
797
 
798
/// Read how the envelope and noise floor data is delta coded
799
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
800
                          SBRData *ch_data)
801
{
802
    get_bits1_vector(gb, ch_data->bs_df_env,   ch_data->bs_num_env);
803
    get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
804
}
805
 
806
/// Read inverse filtering data
807
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
808
                          SBRData *ch_data)
809
{
810
    int i;
811
 
812
    memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
813
    for (i = 0; i < sbr->n_q; i++)
814
        ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
815
}
816
 
817
static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
818
                              SBRData *ch_data, int ch)
819
{
820
    int bits;
821
    int i, j, k;
822
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
823
    int t_lav, f_lav;
824
    const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
825
    const int odd = sbr->n[1] & 1;
826
 
827
    if (sbr->bs_coupling && ch) {
828
        if (ch_data->bs_amp_res) {
829
            bits   = 5;
830
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
831
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
832
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
833
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
834
        } else {
835
            bits   = 6;
836
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
837
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
838
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
839
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
840
        }
841
    } else {
842
        if (ch_data->bs_amp_res) {
843
            bits   = 6;
844
            t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
845
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
846
            f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
847
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
848
        } else {
849
            bits   = 7;
850
            t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
851
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
852
            f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
853
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
854
        }
855
    }
856
 
857
    for (i = 0; i < ch_data->bs_num_env; i++) {
858
        if (ch_data->bs_df_env[i]) {
859
            // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
860
            if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
861
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
862
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
863
            } else if (ch_data->bs_freq_res[i + 1]) {
864
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
865
                    k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
866
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
867
                }
868
            } else {
869
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
870
                    k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
871
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
872
                }
873
            }
874
        } else {
875
            ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
876
            for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
877
                ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
878
        }
879
    }
880
 
881
    //assign 0th elements of env_facs from last elements
882
    memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
883
           sizeof(ch_data->env_facs[0]));
884
}
885
 
886
static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
887
                           SBRData *ch_data, int ch)
888
{
889
    int i, j;
890
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
891
    int t_lav, f_lav;
892
    int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
893
 
894
    if (sbr->bs_coupling && ch) {
895
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
896
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
897
        f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
898
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
899
    } else {
900
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
901
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
902
        f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
903
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
904
    }
905
 
906
    for (i = 0; i < ch_data->bs_num_noise; i++) {
907
        if (ch_data->bs_df_noise[i]) {
908
            for (j = 0; j < sbr->n_q; j++)
909
                ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
910
        } else {
911
            ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
912
            for (j = 1; j < sbr->n_q; j++)
913
                ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
914
        }
915
    }
916
 
917
    //assign 0th elements of noise_facs from last elements
918
    memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
919
           sizeof(ch_data->noise_facs[0]));
920
}
921
 
922
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
923
                               GetBitContext *gb,
924
                               int bs_extension_id, int *num_bits_left)
925
{
926
    switch (bs_extension_id) {
927
    case EXTENSION_ID_PS:
928
        if (!ac->oc[1].m4ac.ps) {
929
            av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
930
            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
931
            *num_bits_left = 0;
932
        } else {
933
#if 1
934
            *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
935
#else
936
            avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
937
            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
938
            *num_bits_left = 0;
939
#endif
940
        }
941
        break;
942
    default:
943
        // some files contain 0-padding
944
        if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
945
            avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
946
        skip_bits_long(gb, *num_bits_left); // bs_fill_bits
947
        *num_bits_left = 0;
948
        break;
949
    }
950
}
951
 
952
static int read_sbr_single_channel_element(AACContext *ac,
953
                                            SpectralBandReplication *sbr,
954
                                            GetBitContext *gb)
955
{
956
    if (get_bits1(gb)) // bs_data_extra
957
        skip_bits(gb, 4); // bs_reserved
958
 
959
    if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
960
        return -1;
961
    read_sbr_dtdf(sbr, gb, &sbr->data[0]);
962
    read_sbr_invf(sbr, gb, &sbr->data[0]);
963
    read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
964
    read_sbr_noise(sbr, gb, &sbr->data[0], 0);
965
 
966
    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
967
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
968
 
969
    return 0;
970
}
971
 
972
static int read_sbr_channel_pair_element(AACContext *ac,
973
                                          SpectralBandReplication *sbr,
974
                                          GetBitContext *gb)
975
{
976
    if (get_bits1(gb))    // bs_data_extra
977
        skip_bits(gb, 8); // bs_reserved
978
 
979
    if ((sbr->bs_coupling = get_bits1(gb))) {
980
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
981
            return -1;
982
        copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
983
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
984
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
985
        read_sbr_invf(sbr, gb, &sbr->data[0]);
986
        memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
987
        memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
988
        read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
989
        read_sbr_noise(sbr, gb, &sbr->data[0], 0);
990
        read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
991
        read_sbr_noise(sbr, gb, &sbr->data[1], 1);
992
    } else {
993
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
994
            read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
995
            return -1;
996
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
997
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
998
        read_sbr_invf(sbr, gb, &sbr->data[0]);
999
        read_sbr_invf(sbr, gb, &sbr->data[1]);
1000
        read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
1001
        read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
1002
        read_sbr_noise(sbr, gb, &sbr->data[0], 0);
1003
        read_sbr_noise(sbr, gb, &sbr->data[1], 1);
1004
    }
1005
 
1006
    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1007
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1008
    if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1009
        get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1010
 
1011
    return 0;
1012
}
1013
 
1014
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1015
                                  GetBitContext *gb, int id_aac)
1016
{
1017
    unsigned int cnt = get_bits_count(gb);
1018
 
1019
    if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1020
        if (read_sbr_single_channel_element(ac, sbr, gb)) {
1021
            sbr_turnoff(sbr);
1022
            return get_bits_count(gb) - cnt;
1023
        }
1024
    } else if (id_aac == TYPE_CPE) {
1025
        if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1026
            sbr_turnoff(sbr);
1027
            return get_bits_count(gb) - cnt;
1028
        }
1029
    } else {
1030
        av_log(ac->avctx, AV_LOG_ERROR,
1031
            "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1032
        sbr_turnoff(sbr);
1033
        return get_bits_count(gb) - cnt;
1034
    }
1035
    if (get_bits1(gb)) { // bs_extended_data
1036
        int num_bits_left = get_bits(gb, 4); // bs_extension_size
1037
        if (num_bits_left == 15)
1038
            num_bits_left += get_bits(gb, 8); // bs_esc_count
1039
 
1040
        num_bits_left <<= 3;
1041
        while (num_bits_left > 7) {
1042
            num_bits_left -= 2;
1043
            read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1044
        }
1045
        if (num_bits_left < 0) {
1046
            av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1047
        }
1048
        if (num_bits_left > 0)
1049
            skip_bits(gb, num_bits_left);
1050
    }
1051
 
1052
    return get_bits_count(gb) - cnt;
1053
}
1054
 
1055
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1056
{
1057
    int err;
1058
    err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1059
    if (err >= 0)
1060
        err = sbr_make_f_derived(ac, sbr);
1061
    if (err < 0) {
1062
        av_log(ac->avctx, AV_LOG_ERROR,
1063
               "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1064
        sbr_turnoff(sbr);
1065
    }
1066
}
1067
 
1068
/**
1069
 * Decode Spectral Band Replication extension data; reference: table 4.55.
1070
 *
1071
 * @param   crc flag indicating the presence of CRC checksum
1072
 * @param   cnt length of TYPE_FIL syntactic element in bytes
1073
 *
1074
 * @return  Returns number of bytes consumed from the TYPE_FIL element.
1075
 */
1076
int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
1077
                            GetBitContext *gb_host, int crc, int cnt, int id_aac)
1078
{
1079
    unsigned int num_sbr_bits = 0, num_align_bits;
1080
    unsigned bytes_read;
1081
    GetBitContext gbc = *gb_host, *gb = &gbc;
1082
    skip_bits_long(gb_host, cnt*8 - 4);
1083
 
1084
    sbr->reset = 0;
1085
 
1086
    if (!sbr->sample_rate)
1087
        sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1088
    if (!ac->oc[1].m4ac.ext_sample_rate)
1089
        ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1090
 
1091
    if (crc) {
1092
        skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1093
        num_sbr_bits += 10;
1094
    }
1095
 
1096
    //Save some state from the previous frame.
1097
    sbr->kx[0] = sbr->kx[1];
1098
    sbr->m[0] = sbr->m[1];
1099
    sbr->kx_and_m_pushed = 1;
1100
 
1101
    num_sbr_bits++;
1102
    if (get_bits1(gb)) // bs_header_flag
1103
        num_sbr_bits += read_sbr_header(sbr, gb);
1104
 
1105
    if (sbr->reset)
1106
        sbr_reset(ac, sbr);
1107
 
1108
    if (sbr->start)
1109
        num_sbr_bits  += read_sbr_data(ac, sbr, gb, id_aac);
1110
 
1111
    num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1112
    bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1113
 
1114
    if (bytes_read > cnt) {
1115
        av_log(ac->avctx, AV_LOG_ERROR,
1116
               "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1117
    }
1118
    return cnt;
1119
}
1120
 
1121
/// Dequantization and stereo decoding (14496-3 sp04 p203)
1122
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1123
{
1124
    int k, e;
1125
    int ch;
1126
 
1127
    if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1128
        float alpha      = sbr->data[0].bs_amp_res ?  1.0f :  0.5f;
1129
        float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1130
        for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
1131
            for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1132
                float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1133
                float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1134
                float fac;
1135
                if (temp1 > 1E20) {
1136
                    av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1137
                    temp1 = 1;
1138
                }
1139
                fac   = temp1 / (1.0f + temp2);
1140
                sbr->data[0].env_facs[e][k] = fac;
1141
                sbr->data[1].env_facs[e][k] = fac * temp2;
1142
            }
1143
        }
1144
        for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1145
            for (k = 0; k < sbr->n_q; k++) {
1146
                float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1147
                float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1148
                float fac;
1149
                if (temp1 > 1E20) {
1150
                    av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1151
                    temp1 = 1;
1152
                }
1153
                fac = temp1 / (1.0f + temp2);
1154
                sbr->data[0].noise_facs[e][k] = fac;
1155
                sbr->data[1].noise_facs[e][k] = fac * temp2;
1156
            }
1157
        }
1158
    } else { // SCE or one non-coupled CPE
1159
        for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1160
            float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1161
            for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
1162
                for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
1163
                    sbr->data[ch].env_facs[e][k] =
1164
                        exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1165
                    if (sbr->data[ch].env_facs[e][k] > 1E20) {
1166
                        av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1167
                        sbr->data[ch].env_facs[e][k] = 1;
1168
                    }
1169
                }
1170
 
1171
            for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1172
                for (k = 0; k < sbr->n_q; k++)
1173
                    sbr->data[ch].noise_facs[e][k] =
1174
                        exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1175
        }
1176
    }
1177
}
1178
 
1179
/**
1180
 * Analysis QMF Bank (14496-3 sp04 p206)
1181
 *
1182
 * @param   x       pointer to the beginning of the first sample window
1183
 * @param   W       array of complex-valued samples split into subbands
1184
 */
1185
#ifndef sbr_qmf_analysis
1186
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
1187
                             SBRDSPContext *sbrdsp, const float *in, float *x,
1188
                             float z[320], float W[2][32][32][2], int buf_idx)
1189
{
1190
    int i;
1191
    memcpy(x    , x+1024, (320-32)*sizeof(x[0]));
1192
    memcpy(x+288, in,         1024*sizeof(x[0]));
1193
    for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1194
                               // are not supported
1195
        dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1196
        sbrdsp->sum64x5(z);
1197
        sbrdsp->qmf_pre_shuffle(z);
1198
        mdct->imdct_half(mdct, z, z+64);
1199
        sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1200
        x += 32;
1201
    }
1202
}
1203
#endif
1204
 
1205
/**
1206
 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1207
 * (14496-3 sp04 p206)
1208
 */
1209
#ifndef sbr_qmf_synthesis
1210
static void sbr_qmf_synthesis(FFTContext *mdct,
1211
                              SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1212
                              float *out, float X[2][38][64],
1213
                              float mdct_buf[2][64],
1214
                              float *v0, int *v_off, const unsigned int div)
1215
{
1216
    int i, n;
1217
    const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1218
    const int step = 128 >> div;
1219
    float *v;
1220
    for (i = 0; i < 32; i++) {
1221
        if (*v_off < step) {
1222
            int saved_samples = (1280 - 128) >> div;
1223
            memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1224
            *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1225
        } else {
1226
            *v_off -= step;
1227
        }
1228
        v = v0 + *v_off;
1229
        if (div) {
1230
            for (n = 0; n < 32; n++) {
1231
                X[0][i][   n] = -X[0][i][n];
1232
                X[0][i][32+n] =  X[1][i][31-n];
1233
            }
1234
            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1235
            sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1236
        } else {
1237
            sbrdsp->neg_odd_64(X[1][i]);
1238
            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1239
            mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1240
            sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1241
        }
1242
        dsp->vector_fmul    (out, v                , sbr_qmf_window                       , 64 >> div);
1243
        dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out   , 64 >> div);
1244
        dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out   , 64 >> div);
1245
        dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out   , 64 >> div);
1246
        dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out   , 64 >> div);
1247
        dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out   , 64 >> div);
1248
        dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out   , 64 >> div);
1249
        dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out   , 64 >> div);
1250
        dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out   , 64 >> div);
1251
        dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out   , 64 >> div);
1252
        out += 64 >> div;
1253
    }
1254
}
1255
#endif
1256
 
1257
/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1258
 * (14496-3 sp04 p214)
1259
 * Warning: This routine does not seem numerically stable.
1260
 */
1261
static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
1262
                                  float (*alpha0)[2], float (*alpha1)[2],
1263
                                  const float X_low[32][40][2], int k0)
1264
{
1265
    int k;
1266
    for (k = 0; k < k0; k++) {
1267
        LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
1268
        float dk;
1269
 
1270
        dsp->autocorrelate(X_low[k], phi);
1271
 
1272
        dk =  phi[2][1][0] * phi[1][0][0] -
1273
             (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1274
 
1275
        if (!dk) {
1276
            alpha1[k][0] = 0;
1277
            alpha1[k][1] = 0;
1278
        } else {
1279
            float temp_real, temp_im;
1280
            temp_real = phi[0][0][0] * phi[1][1][0] -
1281
                        phi[0][0][1] * phi[1][1][1] -
1282
                        phi[0][1][0] * phi[1][0][0];
1283
            temp_im   = phi[0][0][0] * phi[1][1][1] +
1284
                        phi[0][0][1] * phi[1][1][0] -
1285
                        phi[0][1][1] * phi[1][0][0];
1286
 
1287
            alpha1[k][0] = temp_real / dk;
1288
            alpha1[k][1] = temp_im   / dk;
1289
        }
1290
 
1291
        if (!phi[1][0][0]) {
1292
            alpha0[k][0] = 0;
1293
            alpha0[k][1] = 0;
1294
        } else {
1295
            float temp_real, temp_im;
1296
            temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1297
                                       alpha1[k][1] * phi[1][1][1];
1298
            temp_im   = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1299
                                       alpha1[k][0] * phi[1][1][1];
1300
 
1301
            alpha0[k][0] = -temp_real / phi[1][0][0];
1302
            alpha0[k][1] = -temp_im   / phi[1][0][0];
1303
        }
1304
 
1305
        if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1306
           alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1307
            alpha1[k][0] = 0;
1308
            alpha1[k][1] = 0;
1309
            alpha0[k][0] = 0;
1310
            alpha0[k][1] = 0;
1311
        }
1312
    }
1313
}
1314
 
1315
/// Chirp Factors (14496-3 sp04 p214)
1316
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1317
{
1318
    int i;
1319
    float new_bw;
1320
    static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1321
 
1322
    for (i = 0; i < sbr->n_q; i++) {
1323
        if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1324
            new_bw = 0.6f;
1325
        } else
1326
            new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1327
 
1328
        if (new_bw < ch_data->bw_array[i]) {
1329
            new_bw = 0.75f    * new_bw + 0.25f    * ch_data->bw_array[i];
1330
        } else
1331
            new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1332
        ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1333
    }
1334
}
1335
 
1336
/// Generate the subband filtered lowband
1337
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1338
                      float X_low[32][40][2], const float W[2][32][32][2],
1339
                      int buf_idx)
1340
{
1341
    int i, k;
1342
    const int t_HFGen = 8;
1343
    const int i_f = 32;
1344
    memset(X_low, 0, 32*sizeof(*X_low));
1345
    for (k = 0; k < sbr->kx[1]; k++) {
1346
        for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1347
            X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1348
            X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1349
        }
1350
    }
1351
    buf_idx = 1-buf_idx;
1352
    for (k = 0; k < sbr->kx[0]; k++) {
1353
        for (i = 0; i < t_HFGen; i++) {
1354
            X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1355
            X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1356
        }
1357
    }
1358
    return 0;
1359
}
1360
 
1361
/// High Frequency Generator (14496-3 sp04 p215)
1362
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1363
                      float X_high[64][40][2], const float X_low[32][40][2],
1364
                      const float (*alpha0)[2], const float (*alpha1)[2],
1365
                      const float bw_array[5], const uint8_t *t_env,
1366
                      int bs_num_env)
1367
{
1368
    int j, x;
1369
    int g = 0;
1370
    int k = sbr->kx[1];
1371
    for (j = 0; j < sbr->num_patches; j++) {
1372
        for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1373
            const int p = sbr->patch_start_subband[j] + x;
1374
            while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1375
                g++;
1376
            g--;
1377
 
1378
            if (g < 0) {
1379
                av_log(ac->avctx, AV_LOG_ERROR,
1380
                       "ERROR : no subband found for frequency %d\n", k);
1381
                return -1;
1382
            }
1383
 
1384
            sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1385
                            X_low[p]  + ENVELOPE_ADJUSTMENT_OFFSET,
1386
                            alpha0[p], alpha1[p], bw_array[g],
1387
                            2 * t_env[0], 2 * t_env[bs_num_env]);
1388
        }
1389
    }
1390
    if (k < sbr->m[1] + sbr->kx[1])
1391
        memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1392
 
1393
    return 0;
1394
}
1395
 
1396
/// Generate the subband filtered lowband
1397
static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
1398
                     const float Y0[38][64][2], const float Y1[38][64][2],
1399
                     const float X_low[32][40][2], int ch)
1400
{
1401
    int k, i;
1402
    const int i_f = 32;
1403
    const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1404
    memset(X, 0, 2*sizeof(*X));
1405
    for (k = 0; k < sbr->kx[0]; k++) {
1406
        for (i = 0; i < i_Temp; i++) {
1407
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1408
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1409
        }
1410
    }
1411
    for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1412
        for (i = 0; i < i_Temp; i++) {
1413
            X[0][i][k] = Y0[i + i_f][k][0];
1414
            X[1][i][k] = Y0[i + i_f][k][1];
1415
        }
1416
    }
1417
 
1418
    for (k = 0; k < sbr->kx[1]; k++) {
1419
        for (i = i_Temp; i < 38; i++) {
1420
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1421
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1422
        }
1423
    }
1424
    for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1425
        for (i = i_Temp; i < i_f; i++) {
1426
            X[0][i][k] = Y1[i][k][0];
1427
            X[1][i][k] = Y1[i][k][1];
1428
        }
1429
    }
1430
    return 0;
1431
}
1432
 
1433
/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1434
 * (14496-3 sp04 p217)
1435
 */
1436
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1437
                        SBRData *ch_data, int e_a[2])
1438
{
1439
    int e, i, m;
1440
 
1441
    memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1442
    for (e = 0; e < ch_data->bs_num_env; e++) {
1443
        const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1444
        uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1445
        int k;
1446
 
1447
        if (sbr->kx[1] != table[0]) {
1448
            av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1449
                   "Derived frequency tables were not regenerated.\n");
1450
            sbr_turnoff(sbr);
1451
            return AVERROR_BUG;
1452
        }
1453
        for (i = 0; i < ilim; i++)
1454
            for (m = table[i]; m < table[i + 1]; m++)
1455
                sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1456
 
1457
        // ch_data->bs_num_noise > 1 => 2 noise floors
1458
        k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1459
        for (i = 0; i < sbr->n_q; i++)
1460
            for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1461
                sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1462
 
1463
        for (i = 0; i < sbr->n[1]; i++) {
1464
            if (ch_data->bs_add_harmonic_flag) {
1465
                const unsigned int m_midpoint =
1466
                    (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1467
 
1468
                ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1469
                    (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1470
            }
1471
        }
1472
 
1473
        for (i = 0; i < ilim; i++) {
1474
            int additional_sinusoid_present = 0;
1475
            for (m = table[i]; m < table[i + 1]; m++) {
1476
                if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1477
                    additional_sinusoid_present = 1;
1478
                    break;
1479
                }
1480
            }
1481
            memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1482
                   (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1483
        }
1484
    }
1485
 
1486
    memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1487
    return 0;
1488
}
1489
 
1490
/// Estimation of current envelope (14496-3 sp04 p218)
1491
static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1492
                             SpectralBandReplication *sbr, SBRData *ch_data)
1493
{
1494
    int e, m;
1495
    int kx1 = sbr->kx[1];
1496
 
1497
    if (sbr->bs_interpol_freq) {
1498
        for (e = 0; e < ch_data->bs_num_env; e++) {
1499
            const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1500
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1501
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1502
 
1503
            for (m = 0; m < sbr->m[1]; m++) {
1504
                float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1505
                e_curr[e][m] = sum * recip_env_size;
1506
            }
1507
        }
1508
    } else {
1509
        int k, p;
1510
 
1511
        for (e = 0; e < ch_data->bs_num_env; e++) {
1512
            const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1513
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1514
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1515
            const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1516
 
1517
            for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1518
                float sum = 0.0f;
1519
                const int den = env_size * (table[p + 1] - table[p]);
1520
 
1521
                for (k = table[p]; k < table[p + 1]; k++) {
1522
                    sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1523
                }
1524
                sum /= den;
1525
                for (k = table[p]; k < table[p + 1]; k++) {
1526
                    e_curr[e][k - kx1] = sum;
1527
                }
1528
            }
1529
        }
1530
    }
1531
}
1532
 
1533
/**
1534
 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1535
 * and Calculation of gain (14496-3 sp04 p219)
1536
 */
1537
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
1538
                          SBRData *ch_data, const int e_a[2])
1539
{
1540
    int e, k, m;
1541
    // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1542
    static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1543
 
1544
    for (e = 0; e < ch_data->bs_num_env; e++) {
1545
        int delta = !((e == e_a[1]) || (e == e_a[0]));
1546
        for (k = 0; k < sbr->n_lim; k++) {
1547
            float gain_boost, gain_max;
1548
            float sum[2] = { 0.0f, 0.0f };
1549
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1550
                const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1551
                sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1552
                sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1553
                if (!sbr->s_mapped[e][m]) {
1554
                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1555
                                            ((1.0f + sbr->e_curr[e][m]) *
1556
                                             (1.0f + sbr->q_mapped[e][m] * delta)));
1557
                } else {
1558
                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1559
                                            ((1.0f + sbr->e_curr[e][m]) *
1560
                                             (1.0f + sbr->q_mapped[e][m])));
1561
                }
1562
            }
1563
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1564
                sum[0] += sbr->e_origmapped[e][m];
1565
                sum[1] += sbr->e_curr[e][m];
1566
            }
1567
            gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1568
            gain_max = FFMIN(100000.f, gain_max);
1569
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1570
                float q_m_max   = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1571
                sbr->q_m[e][m]  = FFMIN(sbr->q_m[e][m], q_m_max);
1572
                sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1573
            }
1574
            sum[0] = sum[1] = 0.0f;
1575
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1576
                sum[0] += sbr->e_origmapped[e][m];
1577
                sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1578
                          + sbr->s_m[e][m] * sbr->s_m[e][m]
1579
                          + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1580
            }
1581
            gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1582
            gain_boost = FFMIN(1.584893192f, gain_boost);
1583
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1584
                sbr->gain[e][m] *= gain_boost;
1585
                sbr->q_m[e][m]  *= gain_boost;
1586
                sbr->s_m[e][m]  *= gain_boost;
1587
            }
1588
        }
1589
    }
1590
}
1591
 
1592
/// Assembling HF Signals (14496-3 sp04 p220)
1593
static void sbr_hf_assemble(float Y1[38][64][2],
1594
                            const float X_high[64][40][2],
1595
                            SpectralBandReplication *sbr, SBRData *ch_data,
1596
                            const int e_a[2])
1597
{
1598
    int e, i, j, m;
1599
    const int h_SL = 4 * !sbr->bs_smoothing_mode;
1600
    const int kx = sbr->kx[1];
1601
    const int m_max = sbr->m[1];
1602
    static const float h_smooth[5] = {
1603
        0.33333333333333,
1604
        0.30150283239582,
1605
        0.21816949906249,
1606
        0.11516383427084,
1607
        0.03183050093751,
1608
    };
1609
    float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1610
    int indexnoise = ch_data->f_indexnoise;
1611
    int indexsine  = ch_data->f_indexsine;
1612
 
1613
    if (sbr->reset) {
1614
        for (i = 0; i < h_SL; i++) {
1615
            memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1616
            memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
1617
        }
1618
    } else if (h_SL) {
1619
        memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
1620
        memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
1621
    }
1622
 
1623
    for (e = 0; e < ch_data->bs_num_env; e++) {
1624
        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1625
            memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1626
            memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
1627
        }
1628
    }
1629
 
1630
    for (e = 0; e < ch_data->bs_num_env; e++) {
1631
        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1632
            LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
1633
            LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
1634
            float *g_filt, *q_filt;
1635
 
1636
            if (h_SL && e != e_a[0] && e != e_a[1]) {
1637
                g_filt = g_filt_tab;
1638
                q_filt = q_filt_tab;
1639
                for (m = 0; m < m_max; m++) {
1640
                    const int idx1 = i + h_SL;
1641
                    g_filt[m] = 0.0f;
1642
                    q_filt[m] = 0.0f;
1643
                    for (j = 0; j <= h_SL; j++) {
1644
                        g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
1645
                        q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
1646
                    }
1647
                }
1648
            } else {
1649
                g_filt = g_temp[i + h_SL];
1650
                q_filt = q_temp[i];
1651
            }
1652
 
1653
            sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
1654
                               i + ENVELOPE_ADJUSTMENT_OFFSET);
1655
 
1656
            if (e != e_a[0] && e != e_a[1]) {
1657
                sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
1658
                                                   q_filt, indexnoise,
1659
                                                   kx, m_max);
1660
            } else {
1661
                int idx = indexsine&1;
1662
                int A = (1-((indexsine+(kx & 1))&2));
1663
                int B = (A^(-idx)) + idx;
1664
                float *out = &Y1[i][kx][idx];
1665
                float *in  = sbr->s_m[e];
1666
                for (m = 0; m+1 < m_max; m+=2) {
1667
                    out[2*m  ] += in[m  ] * A;
1668
                    out[2*m+2] += in[m+1] * B;
1669
                }
1670
                if(m_max&1)
1671
                    out[2*m  ] += in[m  ] * A;
1672
            }
1673
            indexnoise = (indexnoise + m_max) & 0x1ff;
1674
            indexsine = (indexsine + 1) & 3;
1675
        }
1676
    }
1677
    ch_data->f_indexnoise = indexnoise;
1678
    ch_data->f_indexsine  = indexsine;
1679
}
1680
 
1681
void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
1682
                  float* L, float* R)
1683
{
1684
    int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1685
    int ch;
1686
    int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1687
    int err;
1688
 
1689
    if (!sbr->kx_and_m_pushed) {
1690
        sbr->kx[0] = sbr->kx[1];
1691
        sbr->m[0] = sbr->m[1];
1692
    } else {
1693
        sbr->kx_and_m_pushed = 0;
1694
    }
1695
 
1696
    if (sbr->start) {
1697
        sbr_dequant(sbr, id_aac);
1698
    }
1699
    for (ch = 0; ch < nch; ch++) {
1700
        /* decode channel */
1701
        sbr_qmf_analysis(&ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1702
                         (float*)sbr->qmf_filter_scratch,
1703
                         sbr->data[ch].W, sbr->data[ch].Ypos);
1704
        sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W, sbr->data[ch].Ypos);
1705
        sbr->data[ch].Ypos ^= 1;
1706
        if (sbr->start) {
1707
            sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
1708
            sbr_chirp(sbr, &sbr->data[ch]);
1709
            sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
1710
                       sbr->data[ch].bw_array, sbr->data[ch].t_env,
1711
                       sbr->data[ch].bs_num_env);
1712
 
1713
            // hf_adj
1714
            err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1715
            if (!err) {
1716
                sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1717
                sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1718
                sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1719
                                sbr->X_high, sbr, &sbr->data[ch],
1720
                                sbr->data[ch].e_a);
1721
            }
1722
        }
1723
 
1724
        /* synthesis */
1725
        sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1726
                  sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1727
                  sbr->data[ch].Y[  sbr->data[ch].Ypos],
1728
                  sbr->X_low, ch);
1729
    }
1730
 
1731
    if (ac->oc[1].m4ac.ps == 1) {
1732
        if (sbr->ps.start) {
1733
            ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1734
        } else {
1735
            memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1736
        }
1737
        nch = 2;
1738
    }
1739
 
1740
    sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
1741
                      L, sbr->X[0], sbr->qmf_filter_scratch,
1742
                      sbr->data[0].synthesis_filterbank_samples,
1743
                      &sbr->data[0].synthesis_filterbank_samples_offset,
1744
                      downsampled);
1745
    if (nch == 2)
1746
        sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
1747
                          R, sbr->X[1], sbr->qmf_filter_scratch,
1748
                          sbr->data[1].synthesis_filterbank_samples,
1749
                          &sbr->data[1].synthesis_filterbank_samples_offset,
1750
                          downsampled);
1751
}
1752
 
1753
static void aacsbr_func_ptr_init(AACSBRContext *c)
1754
{
1755
    c->sbr_lf_gen            = sbr_lf_gen;
1756
    c->sbr_hf_assemble       = sbr_hf_assemble;
1757
    c->sbr_x_gen             = sbr_x_gen;
1758
    c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;
1759
 
1760
    if(ARCH_MIPS)
1761
        ff_aacsbr_func_ptr_init_mips(c);
1762
}