Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6148 serge 1
/*
2
 * AAC encoder
3
 * Copyright (C) 2008 Konstantin Shishkov
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * AAC encoder
25
 */
26
 
27
/***********************************
28
 *              TODOs:
29
 * add sane pulse detection
30
 * add temporal noise shaping
31
 ***********************************/
32
 
33
#include "libavutil/float_dsp.h"
34
#include "libavutil/opt.h"
35
#include "avcodec.h"
36
#include "put_bits.h"
37
#include "internal.h"
38
#include "mpeg4audio.h"
39
#include "kbdwin.h"
40
#include "sinewin.h"
41
 
42
#include "aac.h"
43
#include "aactab.h"
44
#include "aacenc.h"
45
 
46
#include "psymodel.h"
47
 
48
#define AAC_MAX_CHANNELS 6
49
 
50
#define ERROR_IF(cond, ...) \
51
    if (cond) { \
52
        av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \
53
        return AVERROR(EINVAL); \
54
    }
55
 
56
float ff_aac_pow34sf_tab[428];
57
 
58
static const uint8_t swb_size_1024_96[] = {
59
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8,
60
    12, 12, 12, 12, 12, 16, 16, 24, 28, 36, 44,
61
    64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64
62
};
63
 
64
static const uint8_t swb_size_1024_64[] = {
65
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8,
66
    12, 12, 12, 16, 16, 16, 20, 24, 24, 28, 36,
67
    40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40
68
};
69
 
70
static const uint8_t swb_size_1024_48[] = {
71
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8,
72
    12, 12, 12, 12, 16, 16, 20, 20, 24, 24, 28, 28,
73
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,
74
    96
75
};
76
 
77
static const uint8_t swb_size_1024_32[] = {
78
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8,
79
    12, 12, 12, 12, 16, 16, 20, 20, 24, 24, 28, 28,
80
    32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32
81
};
82
 
83
static const uint8_t swb_size_1024_24[] = {
84
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
85
    12, 12, 12, 12, 16, 16, 16, 20, 20, 24, 24, 28, 28,
86
    32, 36, 36, 40, 44, 48, 52, 52, 64, 64, 64, 64, 64
87
};
88
 
89
static const uint8_t swb_size_1024_16[] = {
90
    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
91
    12, 12, 12, 12, 12, 12, 12, 12, 12, 16, 16, 16, 16, 20, 20, 20, 24, 24, 28, 28,
92
    32, 36, 40, 40, 44, 48, 52, 56, 60, 64, 64, 64
93
};
94
 
95
static const uint8_t swb_size_1024_8[] = {
96
    12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
97
    16, 16, 16, 16, 16, 16, 16, 20, 20, 20, 20, 24, 24, 24, 28, 28,
98
    32, 36, 36, 40, 44, 48, 52, 56, 60, 64, 80
99
};
100
 
101
static const uint8_t *swb_size_1024[] = {
102
    swb_size_1024_96, swb_size_1024_96, swb_size_1024_64,
103
    swb_size_1024_48, swb_size_1024_48, swb_size_1024_32,
104
    swb_size_1024_24, swb_size_1024_24, swb_size_1024_16,
105
    swb_size_1024_16, swb_size_1024_16, swb_size_1024_8
106
};
107
 
108
static const uint8_t swb_size_128_96[] = {
109
    4, 4, 4, 4, 4, 4, 8, 8, 8, 16, 28, 36
110
};
111
 
112
static const uint8_t swb_size_128_48[] = {
113
    4, 4, 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16
114
};
115
 
116
static const uint8_t swb_size_128_24[] = {
117
    4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 20
118
};
119
 
120
static const uint8_t swb_size_128_16[] = {
121
    4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 12, 12, 16, 20, 20
122
};
123
 
124
static const uint8_t swb_size_128_8[] = {
125
    4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 12, 16, 20, 20
126
};
127
 
128
static const uint8_t *swb_size_128[] = {
129
    /* the last entry on the following row is swb_size_128_64 but is a
130
       duplicate of swb_size_128_96 */
131
    swb_size_128_96, swb_size_128_96, swb_size_128_96,
132
    swb_size_128_48, swb_size_128_48, swb_size_128_48,
133
    swb_size_128_24, swb_size_128_24, swb_size_128_16,
134
    swb_size_128_16, swb_size_128_16, swb_size_128_8
135
};
136
 
137
/** default channel configurations */
138
static const uint8_t aac_chan_configs[6][5] = {
139
 {1, TYPE_SCE},                               // 1 channel  - single channel element
140
 {1, TYPE_CPE},                               // 2 channels - channel pair
141
 {2, TYPE_SCE, TYPE_CPE},                     // 3 channels - center + stereo
142
 {3, TYPE_SCE, TYPE_CPE, TYPE_SCE},           // 4 channels - front center + stereo + back center
143
 {3, TYPE_SCE, TYPE_CPE, TYPE_CPE},           // 5 channels - front center + stereo + back stereo
144
 {4, TYPE_SCE, TYPE_CPE, TYPE_CPE, TYPE_LFE}, // 6 channels - front center + stereo + back stereo + LFE
145
};
146
 
147
/**
148
 * Table to remap channels from libavcodec's default order to AAC order.
149
 */
150
static const uint8_t aac_chan_maps[AAC_MAX_CHANNELS][AAC_MAX_CHANNELS] = {
151
    { 0 },
152
    { 0, 1 },
153
    { 2, 0, 1 },
154
    { 2, 0, 1, 3 },
155
    { 2, 0, 1, 3, 4 },
156
    { 2, 0, 1, 4, 5, 3 },
157
};
158
 
159
/**
160
 * Make AAC audio config object.
161
 * @see 1.6.2.1 "Syntax - AudioSpecificConfig"
162
 */
163
static void put_audio_specific_config(AVCodecContext *avctx)
164
{
165
    PutBitContext pb;
166
    AACEncContext *s = avctx->priv_data;
167
 
168
    init_put_bits(&pb, avctx->extradata, avctx->extradata_size*8);
169
    put_bits(&pb, 5, 2); //object type - AAC-LC
170
    put_bits(&pb, 4, s->samplerate_index); //sample rate index
171
    put_bits(&pb, 4, s->channels);
172
    //GASpecificConfig
173
    put_bits(&pb, 1, 0); //frame length - 1024 samples
174
    put_bits(&pb, 1, 0); //does not depend on core coder
175
    put_bits(&pb, 1, 0); //is not extension
176
 
177
    //Explicitly Mark SBR absent
178
    put_bits(&pb, 11, 0x2b7); //sync extension
179
    put_bits(&pb, 5,  AOT_SBR);
180
    put_bits(&pb, 1,  0);
181
    flush_put_bits(&pb);
182
}
183
 
184
#define WINDOW_FUNC(type) \
185
static void apply_ ##type ##_window(AVFloatDSPContext *fdsp, \
186
                                    SingleChannelElement *sce, \
187
                                    const float *audio)
188
 
189
WINDOW_FUNC(only_long)
190
{
191
    const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
192
    const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
193
    float *out = sce->ret_buf;
194
 
195
    fdsp->vector_fmul        (out,        audio,        lwindow, 1024);
196
    fdsp->vector_fmul_reverse(out + 1024, audio + 1024, pwindow, 1024);
197
}
198
 
199
WINDOW_FUNC(long_start)
200
{
201
    const float *lwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
202
    const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
203
    float *out = sce->ret_buf;
204
 
205
    fdsp->vector_fmul(out, audio, lwindow, 1024);
206
    memcpy(out + 1024, audio + 1024, sizeof(out[0]) * 448);
207
    fdsp->vector_fmul_reverse(out + 1024 + 448, audio + 1024 + 448, swindow, 128);
208
    memset(out + 1024 + 576, 0, sizeof(out[0]) * 448);
209
}
210
 
211
WINDOW_FUNC(long_stop)
212
{
213
    const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
214
    const float *swindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
215
    float *out = sce->ret_buf;
216
 
217
    memset(out, 0, sizeof(out[0]) * 448);
218
    fdsp->vector_fmul(out + 448, audio + 448, swindow, 128);
219
    memcpy(out + 576, audio + 576, sizeof(out[0]) * 448);
220
    fdsp->vector_fmul_reverse(out + 1024, audio + 1024, lwindow, 1024);
221
}
222
 
223
WINDOW_FUNC(eight_short)
224
{
225
    const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
226
    const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
227
    const float *in = audio + 448;
228
    float *out = sce->ret_buf;
229
    int w;
230
 
231
    for (w = 0; w < 8; w++) {
232
        fdsp->vector_fmul        (out, in, w ? pwindow : swindow, 128);
233
        out += 128;
234
        in  += 128;
235
        fdsp->vector_fmul_reverse(out, in, swindow, 128);
236
        out += 128;
237
    }
238
}
239
 
240
static void (*const apply_window[4])(AVFloatDSPContext *fdsp,
241
                                     SingleChannelElement *sce,
242
                                     const float *audio) = {
243
    [ONLY_LONG_SEQUENCE]   = apply_only_long_window,
244
    [LONG_START_SEQUENCE]  = apply_long_start_window,
245
    [EIGHT_SHORT_SEQUENCE] = apply_eight_short_window,
246
    [LONG_STOP_SEQUENCE]   = apply_long_stop_window
247
};
248
 
249
static void apply_window_and_mdct(AACEncContext *s, SingleChannelElement *sce,
250
                                  float *audio)
251
{
252
    int i;
253
    float *output = sce->ret_buf;
254
 
255
    apply_window[sce->ics.window_sequence[0]](&s->fdsp, sce, audio);
256
 
257
    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE)
258
        s->mdct1024.mdct_calc(&s->mdct1024, sce->coeffs, output);
259
    else
260
        for (i = 0; i < 1024; i += 128)
261
            s->mdct128.mdct_calc(&s->mdct128, sce->coeffs + i, output + i*2);
262
    memcpy(audio, audio + 1024, sizeof(audio[0]) * 1024);
263
}
264
 
265
/**
266
 * Encode ics_info element.
267
 * @see Table 4.6 (syntax of ics_info)
268
 */
269
static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
270
{
271
    int w;
272
 
273
    put_bits(&s->pb, 1, 0);                // ics_reserved bit
274
    put_bits(&s->pb, 2, info->window_sequence[0]);
275
    put_bits(&s->pb, 1, info->use_kb_window[0]);
276
    if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
277
        put_bits(&s->pb, 6, info->max_sfb);
278
        put_bits(&s->pb, 1, 0);            // no prediction
279
    } else {
280
        put_bits(&s->pb, 4, info->max_sfb);
281
        for (w = 1; w < 8; w++)
282
            put_bits(&s->pb, 1, !info->group_len[w]);
283
    }
284
}
285
 
286
/**
287
 * Encode MS data.
288
 * @see 4.6.8.1 "Joint Coding - M/S Stereo"
289
 */
290
static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
291
{
292
    int i, w;
293
 
294
    put_bits(pb, 2, cpe->ms_mode);
295
    if (cpe->ms_mode == 1)
296
        for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w])
297
            for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
298
                put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
299
}
300
 
301
/**
302
 * Produce integer coefficients from scalefactors provided by the model.
303
 */
304
static void adjust_frame_information(ChannelElement *cpe, int chans)
305
{
306
    int i, w, w2, g, ch;
307
    int start, maxsfb, cmaxsfb;
308
 
309
    for (ch = 0; ch < chans; ch++) {
310
        IndividualChannelStream *ics = &cpe->ch[ch].ics;
311
        start = 0;
312
        maxsfb = 0;
313
        cpe->ch[ch].pulse.num_pulse = 0;
314
        for (w = 0; w < ics->num_windows*16; w += 16) {
315
            for (g = 0; g < ics->num_swb; g++) {
316
                //apply M/S
317
                if (cpe->common_window && !ch && cpe->ms_mask[w + g]) {
318
                    for (i = 0; i < ics->swb_sizes[g]; i++) {
319
                        cpe->ch[0].coeffs[start+i] = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) / 2.0;
320
                        cpe->ch[1].coeffs[start+i] =  cpe->ch[0].coeffs[start+i] - cpe->ch[1].coeffs[start+i];
321
                    }
322
                }
323
                start += ics->swb_sizes[g];
324
            }
325
            for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w+cmaxsfb-1]; cmaxsfb--)
326
                ;
327
            maxsfb = FFMAX(maxsfb, cmaxsfb);
328
        }
329
        ics->max_sfb = maxsfb;
330
 
331
        //adjust zero bands for window groups
332
        for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
333
            for (g = 0; g < ics->max_sfb; g++) {
334
                i = 1;
335
                for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
336
                    if (!cpe->ch[ch].zeroes[w2*16 + g]) {
337
                        i = 0;
338
                        break;
339
                    }
340
                }
341
                cpe->ch[ch].zeroes[w*16 + g] = i;
342
            }
343
        }
344
    }
345
 
346
    if (chans > 1 && cpe->common_window) {
347
        IndividualChannelStream *ics0 = &cpe->ch[0].ics;
348
        IndividualChannelStream *ics1 = &cpe->ch[1].ics;
349
        int msc = 0;
350
        ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
351
        ics1->max_sfb = ics0->max_sfb;
352
        for (w = 0; w < ics0->num_windows*16; w += 16)
353
            for (i = 0; i < ics0->max_sfb; i++)
354
                if (cpe->ms_mask[w+i])
355
                    msc++;
356
        if (msc == 0 || ics0->max_sfb == 0)
357
            cpe->ms_mode = 0;
358
        else
359
            cpe->ms_mode = msc < ics0->max_sfb * ics0->num_windows ? 1 : 2;
360
    }
361
}
362
 
363
/**
364
 * Encode scalefactor band coding type.
365
 */
366
static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
367
{
368
    int w;
369
 
370
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
371
        s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
372
}
373
 
374
/**
375
 * Encode scalefactors.
376
 */
377
static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
378
                                 SingleChannelElement *sce)
379
{
380
    int off = sce->sf_idx[0], diff;
381
    int i, w;
382
 
383
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
384
        for (i = 0; i < sce->ics.max_sfb; i++) {
385
            if (!sce->zeroes[w*16 + i]) {
386
                diff = sce->sf_idx[w*16 + i] - off + SCALE_DIFF_ZERO;
387
                av_assert0(diff >= 0 && diff <= 120);
388
                off = sce->sf_idx[w*16 + i];
389
                put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
390
            }
391
        }
392
    }
393
}
394
 
395
/**
396
 * Encode pulse data.
397
 */
398
static void encode_pulses(AACEncContext *s, Pulse *pulse)
399
{
400
    int i;
401
 
402
    put_bits(&s->pb, 1, !!pulse->num_pulse);
403
    if (!pulse->num_pulse)
404
        return;
405
 
406
    put_bits(&s->pb, 2, pulse->num_pulse - 1);
407
    put_bits(&s->pb, 6, pulse->start);
408
    for (i = 0; i < pulse->num_pulse; i++) {
409
        put_bits(&s->pb, 5, pulse->pos[i]);
410
        put_bits(&s->pb, 4, pulse->amp[i]);
411
    }
412
}
413
 
414
/**
415
 * Encode spectral coefficients processed by psychoacoustic model.
416
 */
417
static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
418
{
419
    int start, i, w, w2;
420
 
421
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
422
        start = 0;
423
        for (i = 0; i < sce->ics.max_sfb; i++) {
424
            if (sce->zeroes[w*16 + i]) {
425
                start += sce->ics.swb_sizes[i];
426
                continue;
427
            }
428
            for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++)
429
                s->coder->quantize_and_encode_band(s, &s->pb, sce->coeffs + start + w2*128,
430
                                                   sce->ics.swb_sizes[i],
431
                                                   sce->sf_idx[w*16 + i],
432
                                                   sce->band_type[w*16 + i],
433
                                                   s->lambda);
434
            start += sce->ics.swb_sizes[i];
435
        }
436
    }
437
}
438
 
439
/**
440
 * Encode one channel of audio data.
441
 */
442
static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
443
                                     SingleChannelElement *sce,
444
                                     int common_window)
445
{
446
    put_bits(&s->pb, 8, sce->sf_idx[0]);
447
    if (!common_window)
448
        put_ics_info(s, &sce->ics);
449
    encode_band_info(s, sce);
450
    encode_scale_factors(avctx, s, sce);
451
    encode_pulses(s, &sce->pulse);
452
    put_bits(&s->pb, 1, 0); //tns
453
    put_bits(&s->pb, 1, 0); //ssr
454
    encode_spectral_coeffs(s, sce);
455
    return 0;
456
}
457
 
458
/**
459
 * Write some auxiliary information about the created AAC file.
460
 */
461
static void put_bitstream_info(AACEncContext *s, const char *name)
462
{
463
    int i, namelen, padbits;
464
 
465
    namelen = strlen(name) + 2;
466
    put_bits(&s->pb, 3, TYPE_FIL);
467
    put_bits(&s->pb, 4, FFMIN(namelen, 15));
468
    if (namelen >= 15)
469
        put_bits(&s->pb, 8, namelen - 14);
470
    put_bits(&s->pb, 4, 0); //extension type - filler
471
    padbits = -put_bits_count(&s->pb) & 7;
472
    avpriv_align_put_bits(&s->pb);
473
    for (i = 0; i < namelen - 2; i++)
474
        put_bits(&s->pb, 8, name[i]);
475
    put_bits(&s->pb, 12 - padbits, 0);
476
}
477
 
478
/*
479
 * Copy input samples.
480
 * Channels are reordered from libavcodec's default order to AAC order.
481
 */
482
static void copy_input_samples(AACEncContext *s, const AVFrame *frame)
483
{
484
    int ch;
485
    int end = 2048 + (frame ? frame->nb_samples : 0);
486
    const uint8_t *channel_map = aac_chan_maps[s->channels - 1];
487
 
488
    /* copy and remap input samples */
489
    for (ch = 0; ch < s->channels; ch++) {
490
        /* copy last 1024 samples of previous frame to the start of the current frame */
491
        memcpy(&s->planar_samples[ch][1024], &s->planar_samples[ch][2048], 1024 * sizeof(s->planar_samples[0][0]));
492
 
493
        /* copy new samples and zero any remaining samples */
494
        if (frame) {
495
            memcpy(&s->planar_samples[ch][2048],
496
                   frame->extended_data[channel_map[ch]],
497
                   frame->nb_samples * sizeof(s->planar_samples[0][0]));
498
        }
499
        memset(&s->planar_samples[ch][end], 0,
500
               (3072 - end) * sizeof(s->planar_samples[0][0]));
501
    }
502
}
503
 
504
static int aac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
505
                            const AVFrame *frame, int *got_packet_ptr)
506
{
507
    AACEncContext *s = avctx->priv_data;
508
    float **samples = s->planar_samples, *samples2, *la, *overlap;
509
    ChannelElement *cpe;
510
    int i, ch, w, g, chans, tag, start_ch, ret;
511
    int chan_el_counter[4];
512
    FFPsyWindowInfo windows[AAC_MAX_CHANNELS];
513
 
514
    if (s->last_frame == 2)
515
        return 0;
516
 
517
    /* add current frame to queue */
518
    if (frame) {
519
        if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
520
            return ret;
521
    }
522
 
523
    copy_input_samples(s, frame);
524
    if (s->psypp)
525
        ff_psy_preprocess(s->psypp, s->planar_samples, s->channels);
526
 
527
    if (!avctx->frame_number)
528
        return 0;
529
 
530
    start_ch = 0;
531
    for (i = 0; i < s->chan_map[0]; i++) {
532
        FFPsyWindowInfo* wi = windows + start_ch;
533
        tag      = s->chan_map[i+1];
534
        chans    = tag == TYPE_CPE ? 2 : 1;
535
        cpe      = &s->cpe[i];
536
        for (ch = 0; ch < chans; ch++) {
537
            IndividualChannelStream *ics = &cpe->ch[ch].ics;
538
            int cur_channel = start_ch + ch;
539
            overlap  = &samples[cur_channel][0];
540
            samples2 = overlap + 1024;
541
            la       = samples2 + (448+64);
542
            if (!frame)
543
                la = NULL;
544
            if (tag == TYPE_LFE) {
545
                wi[ch].window_type[0] = ONLY_LONG_SEQUENCE;
546
                wi[ch].window_shape   = 0;
547
                wi[ch].num_windows    = 1;
548
                wi[ch].grouping[0]    = 1;
549
 
550
                /* Only the lowest 12 coefficients are used in a LFE channel.
551
                 * The expression below results in only the bottom 8 coefficients
552
                 * being used for 11.025kHz to 16kHz sample rates.
553
                 */
554
                ics->num_swb = s->samplerate_index >= 8 ? 1 : 3;
555
            } else {
556
                wi[ch] = s->psy.model->window(&s->psy, samples2, la, cur_channel,
557
                                              ics->window_sequence[0]);
558
            }
559
            ics->window_sequence[1] = ics->window_sequence[0];
560
            ics->window_sequence[0] = wi[ch].window_type[0];
561
            ics->use_kb_window[1]   = ics->use_kb_window[0];
562
            ics->use_kb_window[0]   = wi[ch].window_shape;
563
            ics->num_windows        = wi[ch].num_windows;
564
            ics->swb_sizes          = s->psy.bands    [ics->num_windows == 8];
565
            ics->num_swb            = tag == TYPE_LFE ? ics->num_swb : s->psy.num_bands[ics->num_windows == 8];
566
            for (w = 0; w < ics->num_windows; w++)
567
                ics->group_len[w] = wi[ch].grouping[w];
568
 
569
            apply_window_and_mdct(s, &cpe->ch[ch], overlap);
570
        }
571
        start_ch += chans;
572
    }
573
    if ((ret = ff_alloc_packet2(avctx, avpkt, 8192 * s->channels)) < 0)
574
        return ret;
575
    do {
576
        int frame_bits;
577
 
578
        init_put_bits(&s->pb, avpkt->data, avpkt->size);
579
 
580
        if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & CODEC_FLAG_BITEXACT))
581
            put_bitstream_info(s, LIBAVCODEC_IDENT);
582
        start_ch = 0;
583
        memset(chan_el_counter, 0, sizeof(chan_el_counter));
584
        for (i = 0; i < s->chan_map[0]; i++) {
585
            FFPsyWindowInfo* wi = windows + start_ch;
586
            const float *coeffs[2];
587
            tag      = s->chan_map[i+1];
588
            chans    = tag == TYPE_CPE ? 2 : 1;
589
            cpe      = &s->cpe[i];
590
            put_bits(&s->pb, 3, tag);
591
            put_bits(&s->pb, 4, chan_el_counter[tag]++);
592
            for (ch = 0; ch < chans; ch++)
593
                coeffs[ch] = cpe->ch[ch].coeffs;
594
            s->psy.model->analyze(&s->psy, start_ch, coeffs, wi);
595
            for (ch = 0; ch < chans; ch++) {
596
                s->cur_channel = start_ch + ch;
597
                s->coder->search_for_quantizers(avctx, s, &cpe->ch[ch], s->lambda);
598
            }
599
            cpe->common_window = 0;
600
            if (chans > 1
601
                && wi[0].window_type[0] == wi[1].window_type[0]
602
                && wi[0].window_shape   == wi[1].window_shape) {
603
 
604
                cpe->common_window = 1;
605
                for (w = 0; w < wi[0].num_windows; w++) {
606
                    if (wi[0].grouping[w] != wi[1].grouping[w]) {
607
                        cpe->common_window = 0;
608
                        break;
609
                    }
610
                }
611
            }
612
            s->cur_channel = start_ch;
613
            if (s->options.stereo_mode && cpe->common_window) {
614
                if (s->options.stereo_mode > 0) {
615
                    IndividualChannelStream *ics = &cpe->ch[0].ics;
616
                    for (w = 0; w < ics->num_windows; w += ics->group_len[w])
617
                        for (g = 0;  g < ics->num_swb; g++)
618
                            cpe->ms_mask[w*16+g] = 1;
619
                } else if (s->coder->search_for_ms) {
620
                    s->coder->search_for_ms(s, cpe, s->lambda);
621
                }
622
            }
623
            adjust_frame_information(cpe, chans);
624
            if (chans == 2) {
625
                put_bits(&s->pb, 1, cpe->common_window);
626
                if (cpe->common_window) {
627
                    put_ics_info(s, &cpe->ch[0].ics);
628
                    encode_ms_info(&s->pb, cpe);
629
                }
630
            }
631
            for (ch = 0; ch < chans; ch++) {
632
                s->cur_channel = start_ch + ch;
633
                encode_individual_channel(avctx, s, &cpe->ch[ch], cpe->common_window);
634
            }
635
            start_ch += chans;
636
        }
637
 
638
        frame_bits = put_bits_count(&s->pb);
639
        if (frame_bits <= 6144 * s->channels - 3) {
640
            s->psy.bitres.bits = frame_bits / s->channels;
641
            break;
642
        }
643
 
644
        s->lambda *= avctx->bit_rate * 1024.0f / avctx->sample_rate / frame_bits;
645
 
646
    } while (1);
647
 
648
    put_bits(&s->pb, 3, TYPE_END);
649
    flush_put_bits(&s->pb);
650
    avctx->frame_bits = put_bits_count(&s->pb);
651
 
652
    // rate control stuff
653
    if (!(avctx->flags & CODEC_FLAG_QSCALE)) {
654
        float ratio = avctx->bit_rate * 1024.0f / avctx->sample_rate / avctx->frame_bits;
655
        s->lambda *= ratio;
656
        s->lambda = FFMIN(s->lambda, 65536.f);
657
    }
658
 
659
    if (!frame)
660
        s->last_frame++;
661
 
662
    ff_af_queue_remove(&s->afq, avctx->frame_size, &avpkt->pts,
663
                       &avpkt->duration);
664
 
665
    avpkt->size = put_bits_count(&s->pb) >> 3;
666
    *got_packet_ptr = 1;
667
    return 0;
668
}
669
 
670
static av_cold int aac_encode_end(AVCodecContext *avctx)
671
{
672
    AACEncContext *s = avctx->priv_data;
673
 
674
    ff_mdct_end(&s->mdct1024);
675
    ff_mdct_end(&s->mdct128);
676
    ff_psy_end(&s->psy);
677
    if (s->psypp)
678
        ff_psy_preprocess_end(s->psypp);
679
    av_freep(&s->buffer.samples);
680
    av_freep(&s->cpe);
681
    ff_af_queue_close(&s->afq);
682
    return 0;
683
}
684
 
685
static av_cold int dsp_init(AVCodecContext *avctx, AACEncContext *s)
686
{
687
    int ret = 0;
688
 
689
    avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
690
 
691
    // window init
692
    ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
693
    ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
694
    ff_init_ff_sine_windows(10);
695
    ff_init_ff_sine_windows(7);
696
 
697
    if (ret = ff_mdct_init(&s->mdct1024, 11, 0, 32768.0))
698
        return ret;
699
    if (ret = ff_mdct_init(&s->mdct128,   8, 0, 32768.0))
700
        return ret;
701
 
702
    return 0;
703
}
704
 
705
static av_cold int alloc_buffers(AVCodecContext *avctx, AACEncContext *s)
706
{
707
    int ch;
708
    FF_ALLOCZ_OR_GOTO(avctx, s->buffer.samples, 3 * 1024 * s->channels * sizeof(s->buffer.samples[0]), alloc_fail);
709
    FF_ALLOCZ_OR_GOTO(avctx, s->cpe, sizeof(ChannelElement) * s->chan_map[0], alloc_fail);
710
    FF_ALLOCZ_OR_GOTO(avctx, avctx->extradata, 5 + FF_INPUT_BUFFER_PADDING_SIZE, alloc_fail);
711
 
712
    for(ch = 0; ch < s->channels; ch++)
713
        s->planar_samples[ch] = s->buffer.samples + 3 * 1024 * ch;
714
 
715
    return 0;
716
alloc_fail:
717
    return AVERROR(ENOMEM);
718
}
719
 
720
static av_cold int aac_encode_init(AVCodecContext *avctx)
721
{
722
    AACEncContext *s = avctx->priv_data;
723
    int i, ret = 0;
724
    const uint8_t *sizes[2];
725
    uint8_t grouping[AAC_MAX_CHANNELS];
726
    int lengths[2];
727
 
728
    avctx->frame_size = 1024;
729
 
730
    for (i = 0; i < 16; i++)
731
        if (avctx->sample_rate == avpriv_mpeg4audio_sample_rates[i])
732
            break;
733
 
734
    s->channels = avctx->channels;
735
 
736
    ERROR_IF(i == 16,
737
             "Unsupported sample rate %d\n", avctx->sample_rate);
738
    ERROR_IF(s->channels > AAC_MAX_CHANNELS,
739
             "Unsupported number of channels: %d\n", s->channels);
740
    ERROR_IF(avctx->profile != FF_PROFILE_UNKNOWN && avctx->profile != FF_PROFILE_AAC_LOW,
741
             "Unsupported profile %d\n", avctx->profile);
742
    ERROR_IF(1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * s->channels,
743
             "Too many bits per frame requested\n");
744
 
745
    s->samplerate_index = i;
746
 
747
    s->chan_map = aac_chan_configs[s->channels-1];
748
 
749
    if (ret = dsp_init(avctx, s))
750
        goto fail;
751
 
752
    if (ret = alloc_buffers(avctx, s))
753
        goto fail;
754
 
755
    avctx->extradata_size = 5;
756
    put_audio_specific_config(avctx);
757
 
758
    sizes[0]   = swb_size_1024[i];
759
    sizes[1]   = swb_size_128[i];
760
    lengths[0] = ff_aac_num_swb_1024[i];
761
    lengths[1] = ff_aac_num_swb_128[i];
762
    for (i = 0; i < s->chan_map[0]; i++)
763
        grouping[i] = s->chan_map[i + 1] == TYPE_CPE;
764
    if (ret = ff_psy_init(&s->psy, avctx, 2, sizes, lengths, s->chan_map[0], grouping))
765
        goto fail;
766
    s->psypp = ff_psy_preprocess_init(avctx);
767
    s->coder = &ff_aac_coders[s->options.aac_coder];
768
 
769
    if (HAVE_MIPSDSPR1)
770
        ff_aac_coder_init_mips(s);
771
 
772
    s->lambda = avctx->global_quality ? avctx->global_quality : 120;
773
 
774
    ff_aac_tableinit();
775
 
776
    for (i = 0; i < 428; i++)
777
        ff_aac_pow34sf_tab[i] = sqrt(ff_aac_pow2sf_tab[i] * sqrt(ff_aac_pow2sf_tab[i]));
778
 
779
    avctx->delay = 1024;
780
    ff_af_queue_init(avctx, &s->afq);
781
 
782
    return 0;
783
fail:
784
    aac_encode_end(avctx);
785
    return ret;
786
}
787
 
788
#define AACENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
789
static const AVOption aacenc_options[] = {
790
    {"stereo_mode", "Stereo coding method", offsetof(AACEncContext, options.stereo_mode), AV_OPT_TYPE_INT, {.i64 = 0}, -1, 1, AACENC_FLAGS, "stereo_mode"},
791
        {"auto",     "Selected by the Encoder", 0, AV_OPT_TYPE_CONST, {.i64 = -1 }, INT_MIN, INT_MAX, AACENC_FLAGS, "stereo_mode"},
792
        {"ms_off",   "Disable Mid/Side coding", 0, AV_OPT_TYPE_CONST, {.i64 =  0 }, INT_MIN, INT_MAX, AACENC_FLAGS, "stereo_mode"},
793
        {"ms_force", "Force Mid/Side for the whole frame if possible", 0, AV_OPT_TYPE_CONST, {.i64 =  1 }, INT_MIN, INT_MAX, AACENC_FLAGS, "stereo_mode"},
794
    {"aac_coder", "", offsetof(AACEncContext, options.aac_coder), AV_OPT_TYPE_INT, {.i64 = AAC_CODER_TWOLOOP}, 0, AAC_CODER_NB-1, AACENC_FLAGS, "aac_coder"},
795
        {"faac",     "FAAC-inspired method",      0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAAC},    INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
796
        {"anmr",     "ANMR method",               0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_ANMR},    INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
797
        {"twoloop",  "Two loop searching method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_TWOLOOP}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
798
        {"fast",     "Constant quantizer",        0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAST},    INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
799
    {NULL}
800
};
801
 
802
static const AVClass aacenc_class = {
803
    "AAC encoder",
804
    av_default_item_name,
805
    aacenc_options,
806
    LIBAVUTIL_VERSION_INT,
807
};
808
 
809
/* duplicated from avpriv_mpeg4audio_sample_rates to avoid shared build
810
 * failures */
811
static const int mpeg4audio_sample_rates[16] = {
812
    96000, 88200, 64000, 48000, 44100, 32000,
813
    24000, 22050, 16000, 12000, 11025, 8000, 7350
814
};
815
 
816
AVCodec ff_aac_encoder = {
817
    .name           = "aac",
818
    .long_name      = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
819
    .type           = AVMEDIA_TYPE_AUDIO,
820
    .id             = AV_CODEC_ID_AAC,
821
    .priv_data_size = sizeof(AACEncContext),
822
    .init           = aac_encode_init,
823
    .encode2        = aac_encode_frame,
824
    .close          = aac_encode_end,
825
    .supported_samplerates = mpeg4audio_sample_rates,
826
    .capabilities   = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY |
827
                      CODEC_CAP_EXPERIMENTAL,
828
    .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
829
                                                     AV_SAMPLE_FMT_NONE },
830
    .priv_class     = &aacenc_class,
831
};