Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * Copyright © 2004 Carl Worth
3
 * Copyright © 2006 Red Hat, Inc.
4
 * Copyright © 2008 Chris Wilson
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it either under the terms of the GNU Lesser General Public
8
 * License version 2.1 as published by the Free Software Foundation
9
 * (the "LGPL") or, at your option, under the terms of the Mozilla
10
 * Public License Version 1.1 (the "MPL"). If you do not alter this
11
 * notice, a recipient may use your version of this file under either
12
 * the MPL or the LGPL.
13
 *
14
 * You should have received a copy of the LGPL along with this library
15
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
17
 * You should have received a copy of the MPL along with this library
18
 * in the file COPYING-MPL-1.1
19
 *
20
 * The contents of this file are subject to the Mozilla Public License
21
 * Version 1.1 (the "License"); you may not use this file except in
22
 * compliance with the License. You may obtain a copy of the License at
23
 * http://www.mozilla.org/MPL/
24
 *
25
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27
 * the specific language governing rights and limitations.
28
 *
29
 * The Original Code is the cairo graphics library.
30
 *
31
 * The Initial Developer of the Original Code is Carl Worth
32
 *
33
 * Contributor(s):
34
 *	Carl D. Worth 
35
 *	Chris Wilson 
36
 */
37
 
38
/* Provide definitions for standalone compilation */
39
#include "cairoint.h"
40
 
41
#include "cairo-error-private.h"
42
#include "cairo-freelist-private.h"
43
#include "cairo-combsort-inline.h"
44
 
45
typedef cairo_point_t cairo_bo_point32_t;
46
 
47
typedef struct _cairo_bo_intersect_ordinate {
48
    int32_t ordinate;
49
    enum { EXACT, INEXACT } exactness;
50
} cairo_bo_intersect_ordinate_t;
51
 
52
typedef struct _cairo_bo_intersect_point {
53
    cairo_bo_intersect_ordinate_t x;
54
    cairo_bo_intersect_ordinate_t y;
55
} cairo_bo_intersect_point_t;
56
 
57
typedef struct _cairo_bo_edge cairo_bo_edge_t;
58
 
59
typedef struct _cairo_bo_deferred {
60
    cairo_bo_edge_t *other;
61
    int32_t top;
62
} cairo_bo_deferred_t;
63
 
64
struct _cairo_bo_edge {
65
    int a_or_b;
66
    cairo_edge_t edge;
67
    cairo_bo_edge_t *prev;
68
    cairo_bo_edge_t *next;
69
    cairo_bo_deferred_t deferred;
70
};
71
 
72
/* the parent is always given by index/2 */
73
#define PQ_PARENT_INDEX(i) ((i) >> 1)
74
#define PQ_FIRST_ENTRY 1
75
 
76
/* left and right children are index * 2 and (index * 2) +1 respectively */
77
#define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
78
 
79
typedef enum {
80
    CAIRO_BO_EVENT_TYPE_STOP,
81
    CAIRO_BO_EVENT_TYPE_INTERSECTION,
82
    CAIRO_BO_EVENT_TYPE_START
83
} cairo_bo_event_type_t;
84
 
85
typedef struct _cairo_bo_event {
86
    cairo_bo_event_type_t type;
87
    cairo_point_t point;
88
} cairo_bo_event_t;
89
 
90
typedef struct _cairo_bo_start_event {
91
    cairo_bo_event_type_t type;
92
    cairo_point_t point;
93
    cairo_bo_edge_t edge;
94
} cairo_bo_start_event_t;
95
 
96
typedef struct _cairo_bo_queue_event {
97
    cairo_bo_event_type_t type;
98
    cairo_point_t point;
99
    cairo_bo_edge_t *e1;
100
    cairo_bo_edge_t *e2;
101
} cairo_bo_queue_event_t;
102
 
103
typedef struct _pqueue {
104
    int size, max_size;
105
 
106
    cairo_bo_event_t **elements;
107
    cairo_bo_event_t *elements_embedded[1024];
108
} pqueue_t;
109
 
110
typedef struct _cairo_bo_event_queue {
111
    cairo_freepool_t pool;
112
    pqueue_t pqueue;
113
    cairo_bo_event_t **start_events;
114
} cairo_bo_event_queue_t;
115
 
116
typedef struct _cairo_bo_sweep_line {
117
    cairo_bo_edge_t *head;
118
    int32_t current_y;
119
    cairo_bo_edge_t *current_edge;
120
} cairo_bo_sweep_line_t;
121
 
122
static cairo_fixed_t
123
_line_compute_intersection_x_for_y (const cairo_line_t *line,
124
				    cairo_fixed_t y)
125
{
126
    cairo_fixed_t x, dy;
127
 
128
    if (y == line->p1.y)
129
	return line->p1.x;
130
    if (y == line->p2.y)
131
	return line->p2.x;
132
 
133
    x = line->p1.x;
134
    dy = line->p2.y - line->p1.y;
135
    if (dy != 0) {
136
	x += _cairo_fixed_mul_div_floor (y - line->p1.y,
137
					 line->p2.x - line->p1.x,
138
					 dy);
139
    }
140
 
141
    return x;
142
}
143
 
144
static inline int
145
_cairo_bo_point32_compare (cairo_bo_point32_t const *a,
146
			   cairo_bo_point32_t const *b)
147
{
148
    int cmp;
149
 
150
    cmp = a->y - b->y;
151
    if (cmp)
152
	return cmp;
153
 
154
    return a->x - b->x;
155
}
156
 
157
/* Compare the slope of a to the slope of b, returning 1, 0, -1 if the
158
 * slope a is respectively greater than, equal to, or less than the
159
 * slope of b.
160
 *
161
 * For each edge, consider the direction vector formed from:
162
 *
163
 *	top -> bottom
164
 *
165
 * which is:
166
 *
167
 *	(dx, dy) = (line.p2.x - line.p1.x, line.p2.y - line.p1.y)
168
 *
169
 * We then define the slope of each edge as dx/dy, (which is the
170
 * inverse of the slope typically used in math instruction). We never
171
 * compute a slope directly as the value approaches infinity, but we
172
 * can derive a slope comparison without division as follows, (where
173
 * the ? represents our compare operator).
174
 *
175
 * 1.	   slope(a) ? slope(b)
176
 * 2.	    adx/ady ? bdx/bdy
177
 * 3.	(adx * bdy) ? (bdx * ady)
178
 *
179
 * Note that from step 2 to step 3 there is no change needed in the
180
 * sign of the result since both ady and bdy are guaranteed to be
181
 * greater than or equal to 0.
182
 *
183
 * When using this slope comparison to sort edges, some care is needed
184
 * when interpreting the results. Since the slope compare operates on
185
 * distance vectors from top to bottom it gives a correct left to
186
 * right sort for edges that have a common top point, (such as two
187
 * edges with start events at the same location). On the other hand,
188
 * the sense of the result will be exactly reversed for two edges that
189
 * have a common stop point.
190
 */
191
static inline int
192
_slope_compare (const cairo_bo_edge_t *a,
193
		const cairo_bo_edge_t *b)
194
{
195
    /* XXX: We're assuming here that dx and dy will still fit in 32
196
     * bits. That's not true in general as there could be overflow. We
197
     * should prevent that before the tessellation algorithm
198
     * begins.
199
     */
200
    int32_t adx = a->edge.line.p2.x - a->edge.line.p1.x;
201
    int32_t bdx = b->edge.line.p2.x - b->edge.line.p1.x;
202
 
203
    /* Since the dy's are all positive by construction we can fast
204
     * path several common cases.
205
     */
206
 
207
    /* First check for vertical lines. */
208
    if (adx == 0)
209
	return -bdx;
210
    if (bdx == 0)
211
	return adx;
212
 
213
    /* Then where the two edges point in different directions wrt x. */
214
    if ((adx ^ bdx) < 0)
215
	return adx;
216
 
217
    /* Finally we actually need to do the general comparison. */
218
    {
219
	int32_t ady = a->edge.line.p2.y - a->edge.line.p1.y;
220
	int32_t bdy = b->edge.line.p2.y - b->edge.line.p1.y;
221
	cairo_int64_t adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
222
	cairo_int64_t bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
223
 
224
	return _cairo_int64_cmp (adx_bdy, bdx_ady);
225
    }
226
}
227
 
228
/*
229
 * We need to compare the x-coordinates of a pair of lines for a particular y,
230
 * without loss of precision.
231
 *
232
 * The x-coordinate along an edge for a given y is:
233
 *   X = A_x + (Y - A_y) * A_dx / A_dy
234
 *
235
 * So the inequality we wish to test is:
236
 *   A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy,
237
 * where ∘ is our inequality operator.
238
 *
239
 * By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are
240
 * all positive, so we can rearrange it thus without causing a sign change:
241
 *   A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy
242
 *                                 - (Y - A_y) * A_dx * B_dy
243
 *
244
 * Given the assumption that all the deltas fit within 32 bits, we can compute
245
 * this comparison directly using 128 bit arithmetic. For certain, but common,
246
 * input we can reduce this down to a single 32 bit compare by inspecting the
247
 * deltas.
248
 *
249
 * (And put the burden of the work on developing fast 128 bit ops, which are
250
 * required throughout the tessellator.)
251
 *
252
 * See the similar discussion for _slope_compare().
253
 */
254
static int
255
edges_compare_x_for_y_general (const cairo_bo_edge_t *a,
256
			       const cairo_bo_edge_t *b,
257
			       int32_t y)
258
{
259
    /* XXX: We're assuming here that dx and dy will still fit in 32
260
     * bits. That's not true in general as there could be overflow. We
261
     * should prevent that before the tessellation algorithm
262
     * begins.
263
     */
264
    int32_t dx;
265
    int32_t adx, ady;
266
    int32_t bdx, bdy;
267
    enum {
268
       HAVE_NONE    = 0x0,
269
       HAVE_DX      = 0x1,
270
       HAVE_ADX     = 0x2,
271
       HAVE_DX_ADX  = HAVE_DX | HAVE_ADX,
272
       HAVE_BDX     = 0x4,
273
       HAVE_DX_BDX  = HAVE_DX | HAVE_BDX,
274
       HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX,
275
       HAVE_ALL     = HAVE_DX | HAVE_ADX | HAVE_BDX
276
    } have_dx_adx_bdx = HAVE_ALL;
277
 
278
    /* don't bother solving for abscissa if the edges' bounding boxes
279
     * can be used to order them. */
280
    {
281
           int32_t amin, amax;
282
           int32_t bmin, bmax;
283
           if (a->edge.line.p1.x < a->edge.line.p2.x) {
284
                   amin = a->edge.line.p1.x;
285
                   amax = a->edge.line.p2.x;
286
           } else {
287
                   amin = a->edge.line.p2.x;
288
                   amax = a->edge.line.p1.x;
289
           }
290
           if (b->edge.line.p1.x < b->edge.line.p2.x) {
291
                   bmin = b->edge.line.p1.x;
292
                   bmax = b->edge.line.p2.x;
293
           } else {
294
                   bmin = b->edge.line.p2.x;
295
                   bmax = b->edge.line.p1.x;
296
           }
297
           if (amax < bmin) return -1;
298
           if (amin > bmax) return +1;
299
    }
300
 
301
    ady = a->edge.line.p2.y - a->edge.line.p1.y;
302
    adx = a->edge.line.p2.x - a->edge.line.p1.x;
303
    if (adx == 0)
304
	have_dx_adx_bdx &= ~HAVE_ADX;
305
 
306
    bdy = b->edge.line.p2.y - b->edge.line.p1.y;
307
    bdx = b->edge.line.p2.x - b->edge.line.p1.x;
308
    if (bdx == 0)
309
	have_dx_adx_bdx &= ~HAVE_BDX;
310
 
311
    dx = a->edge.line.p1.x - b->edge.line.p1.x;
312
    if (dx == 0)
313
	have_dx_adx_bdx &= ~HAVE_DX;
314
 
315
#define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)
316
#define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->edge.line.p1.y)
317
#define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->edge.line.p1.y)
318
    switch (have_dx_adx_bdx) {
319
    default:
320
    case HAVE_NONE:
321
	return 0;
322
    case HAVE_DX:
323
	/* A_dy * B_dy * (A_x - B_x) ∘ 0 */
324
	return dx; /* ady * bdy is positive definite */
325
    case HAVE_ADX:
326
	/* 0 ∘  - (Y - A_y) * A_dx * B_dy */
327
	return adx; /* bdy * (y - a->top.y) is positive definite */
328
    case HAVE_BDX:
329
	/* 0 ∘ (Y - B_y) * B_dx * A_dy */
330
	return -bdx; /* ady * (y - b->top.y) is positive definite */
331
    case HAVE_ADX_BDX:
332
	/*  0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */
333
	if ((adx ^ bdx) < 0) {
334
	    return adx;
335
	} else if (a->edge.line.p1.y == b->edge.line.p1.y) { /* common origin */
336
	    cairo_int64_t adx_bdy, bdx_ady;
337
 
338
	    /* ∴ A_dx * B_dy ∘ B_dx * A_dy */
339
 
340
	    adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
341
	    bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
342
 
343
	    return _cairo_int64_cmp (adx_bdy, bdx_ady);
344
	} else
345
	    return _cairo_int128_cmp (A, B);
346
    case HAVE_DX_ADX:
347
	/* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */
348
	if ((-adx ^ dx) < 0) {
349
	    return dx;
350
	} else {
351
	    cairo_int64_t ady_dx, dy_adx;
352
 
353
	    ady_dx = _cairo_int32x32_64_mul (ady, dx);
354
	    dy_adx = _cairo_int32x32_64_mul (a->edge.line.p1.y - y, adx);
355
 
356
	    return _cairo_int64_cmp (ady_dx, dy_adx);
357
	}
358
    case HAVE_DX_BDX:
359
	/* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */
360
	if ((bdx ^ dx) < 0) {
361
	    return dx;
362
	} else {
363
	    cairo_int64_t bdy_dx, dy_bdx;
364
 
365
	    bdy_dx = _cairo_int32x32_64_mul (bdy, dx);
366
	    dy_bdx = _cairo_int32x32_64_mul (y - b->edge.line.p1.y, bdx);
367
 
368
	    return _cairo_int64_cmp (bdy_dx, dy_bdx);
369
	}
370
    case HAVE_ALL:
371
	/* XXX try comparing (a->edge.line.p2.x - b->edge.line.p2.x) et al */
372
	return _cairo_int128_cmp (L, _cairo_int128_sub (B, A));
373
    }
374
#undef B
375
#undef A
376
#undef L
377
}
378
 
379
/*
380
 * We need to compare the x-coordinate of a line for a particular y wrt to a
381
 * given x, without loss of precision.
382
 *
383
 * The x-coordinate along an edge for a given y is:
384
 *   X = A_x + (Y - A_y) * A_dx / A_dy
385
 *
386
 * So the inequality we wish to test is:
387
 *   A_x + (Y - A_y) * A_dx / A_dy ∘ X
388
 * where ∘ is our inequality operator.
389
 *
390
 * By construction, we know that A_dy (and (Y - A_y)) are
391
 * all positive, so we can rearrange it thus without causing a sign change:
392
 *   (Y - A_y) * A_dx ∘ (X - A_x) * A_dy
393
 *
394
 * Given the assumption that all the deltas fit within 32 bits, we can compute
395
 * this comparison directly using 64 bit arithmetic.
396
 *
397
 * See the similar discussion for _slope_compare() and
398
 * edges_compare_x_for_y_general().
399
 */
400
static int
401
edge_compare_for_y_against_x (const cairo_bo_edge_t *a,
402
			      int32_t y,
403
			      int32_t x)
404
{
405
    int32_t adx, ady;
406
    int32_t dx, dy;
407
    cairo_int64_t L, R;
408
 
409
    if (x < a->edge.line.p1.x && x < a->edge.line.p2.x)
410
	return 1;
411
    if (x > a->edge.line.p1.x && x > a->edge.line.p2.x)
412
	return -1;
413
 
414
    adx = a->edge.line.p2.x - a->edge.line.p1.x;
415
    dx = x - a->edge.line.p1.x;
416
 
417
    if (adx == 0)
418
	return -dx;
419
    if (dx == 0 || (adx ^ dx) < 0)
420
	return adx;
421
 
422
    dy = y - a->edge.line.p1.y;
423
    ady = a->edge.line.p2.y - a->edge.line.p1.y;
424
 
425
    L = _cairo_int32x32_64_mul (dy, adx);
426
    R = _cairo_int32x32_64_mul (dx, ady);
427
 
428
    return _cairo_int64_cmp (L, R);
429
}
430
 
431
static int
432
edges_compare_x_for_y (const cairo_bo_edge_t *a,
433
		       const cairo_bo_edge_t *b,
434
		       int32_t y)
435
{
436
    /* If the sweep-line is currently on an end-point of a line,
437
     * then we know its precise x value (and considering that we often need to
438
     * compare events at end-points, this happens frequently enough to warrant
439
     * special casing).
440
     */
441
    enum {
442
       HAVE_NEITHER = 0x0,
443
       HAVE_AX      = 0x1,
444
       HAVE_BX      = 0x2,
445
       HAVE_BOTH    = HAVE_AX | HAVE_BX
446
    } have_ax_bx = HAVE_BOTH;
447
    int32_t ax, bx;
448
 
449
    if (y == a->edge.line.p1.y)
450
	ax = a->edge.line.p1.x;
451
    else if (y == a->edge.line.p2.y)
452
	ax = a->edge.line.p2.x;
453
    else
454
	have_ax_bx &= ~HAVE_AX;
455
 
456
    if (y == b->edge.line.p1.y)
457
	bx = b->edge.line.p1.x;
458
    else if (y == b->edge.line.p2.y)
459
	bx = b->edge.line.p2.x;
460
    else
461
	have_ax_bx &= ~HAVE_BX;
462
 
463
    switch (have_ax_bx) {
464
    default:
465
    case HAVE_NEITHER:
466
	return edges_compare_x_for_y_general (a, b, y);
467
    case HAVE_AX:
468
	return -edge_compare_for_y_against_x (b, y, ax);
469
    case HAVE_BX:
470
	return edge_compare_for_y_against_x (a, y, bx);
471
    case HAVE_BOTH:
472
	return ax - bx;
473
    }
474
}
475
 
476
static inline int
477
_line_equal (const cairo_line_t *a, const cairo_line_t *b)
478
{
479
    return a->p1.x == b->p1.x && a->p1.y == b->p1.y &&
480
           a->p2.x == b->p2.x && a->p2.y == b->p2.y;
481
}
482
 
483
static int
484
_cairo_bo_sweep_line_compare_edges (cairo_bo_sweep_line_t	*sweep_line,
485
				    const cairo_bo_edge_t	*a,
486
				    const cairo_bo_edge_t	*b)
487
{
488
    int cmp;
489
 
490
    /* compare the edges if not identical */
491
    if (! _line_equal (&a->edge.line, &b->edge.line)) {
492
	cmp = edges_compare_x_for_y (a, b, sweep_line->current_y);
493
	if (cmp)
494
	    return cmp;
495
 
496
	/* The two edges intersect exactly at y, so fall back on slope
497
	 * comparison. We know that this compare_edges function will be
498
	 * called only when starting a new edge, (not when stopping an
499
	 * edge), so we don't have to worry about conditionally inverting
500
	 * the sense of _slope_compare. */
501
	cmp = _slope_compare (a, b);
502
	if (cmp)
503
	    return cmp;
504
    }
505
 
506
    /* We've got two collinear edges now. */
507
    return b->edge.bottom - a->edge.bottom;
508
}
509
 
510
static inline cairo_int64_t
511
det32_64 (int32_t a, int32_t b,
512
	  int32_t c, int32_t d)
513
{
514
    /* det = a * d - b * c */
515
    return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),
516
			     _cairo_int32x32_64_mul (b, c));
517
}
518
 
519
static inline cairo_int128_t
520
det64x32_128 (cairo_int64_t a, int32_t       b,
521
	      cairo_int64_t c, int32_t       d)
522
{
523
    /* det = a * d - b * c */
524
    return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),
525
			      _cairo_int64x32_128_mul (c, b));
526
}
527
 
528
/* Compute the intersection of two lines as defined by two edges. The
529
 * result is provided as a coordinate pair of 128-bit integers.
530
 *
531
 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or
532
 * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel.
533
 */
534
static cairo_bool_t
535
intersect_lines (cairo_bo_edge_t		*a,
536
		 cairo_bo_edge_t		*b,
537
		 cairo_bo_intersect_point_t	*intersection)
538
{
539
    cairo_int64_t a_det, b_det;
540
 
541
    /* XXX: We're assuming here that dx and dy will still fit in 32
542
     * bits. That's not true in general as there could be overflow. We
543
     * should prevent that before the tessellation algorithm begins.
544
     * What we're doing to mitigate this is to perform clamping in
545
     * cairo_bo_tessellate_polygon().
546
     */
547
    int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x;
548
    int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y;
549
 
550
    int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x;
551
    int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y;
552
 
553
    cairo_int64_t den_det;
554
    cairo_int64_t R;
555
    cairo_quorem64_t qr;
556
 
557
    den_det = det32_64 (dx1, dy1, dx2, dy2);
558
 
559
     /* Q: Can we determine that the lines do not intersect (within range)
560
      * much more cheaply than computing the intersection point i.e. by
561
      * avoiding the division?
562
      *
563
      *   X = ax + t * adx = bx + s * bdx;
564
      *   Y = ay + t * ady = by + s * bdy;
565
      *   ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx)
566
      *   => t * L = R
567
      *
568
      * Therefore we can reject any intersection (under the criteria for
569
      * valid intersection events) if:
570
      *   L^R < 0 => t < 0, or
571
      *   L t > 1
572
      *
573
      * (where top/bottom must at least extend to the line endpoints).
574
      *
575
      * A similar substitution can be performed for s, yielding:
576
      *   s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by)
577
      */
578
    R = det32_64 (dx2, dy2,
579
		  b->edge.line.p1.x - a->edge.line.p1.x,
580
		  b->edge.line.p1.y - a->edge.line.p1.y);
581
    if (_cairo_int64_negative (den_det)) {
582
	if (_cairo_int64_ge (den_det, R))
583
	    return FALSE;
584
    } else {
585
	if (_cairo_int64_le (den_det, R))
586
	    return FALSE;
587
    }
588
 
589
    R = det32_64 (dy1, dx1,
590
		  a->edge.line.p1.y - b->edge.line.p1.y,
591
		  a->edge.line.p1.x - b->edge.line.p1.x);
592
    if (_cairo_int64_negative (den_det)) {
593
	if (_cairo_int64_ge (den_det, R))
594
	    return FALSE;
595
    } else {
596
	if (_cairo_int64_le (den_det, R))
597
	    return FALSE;
598
    }
599
 
600
    /* We now know that the two lines should intersect within range. */
601
 
602
    a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y,
603
		      a->edge.line.p2.x, a->edge.line.p2.y);
604
    b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y,
605
		      b->edge.line.p2.x, b->edge.line.p2.y);
606
 
607
    /* x = det (a_det, dx1, b_det, dx2) / den_det */
608
    qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1,
609
						       b_det, dx2),
610
					 den_det);
611
    if (_cairo_int64_eq (qr.rem, den_det))
612
	return FALSE;
613
#if 0
614
    intersection->x.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
615
#else
616
    intersection->x.exactness = EXACT;
617
    if (! _cairo_int64_is_zero (qr.rem)) {
618
	if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
619
	    qr.rem = _cairo_int64_negate (qr.rem);
620
	qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
621
	if (_cairo_int64_ge (qr.rem, den_det)) {
622
	    qr.quo = _cairo_int64_add (qr.quo,
623
				       _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
624
	} else
625
	    intersection->x.exactness = INEXACT;
626
    }
627
#endif
628
    intersection->x.ordinate = _cairo_int64_to_int32 (qr.quo);
629
 
630
    /* y = det (a_det, dy1, b_det, dy2) / den_det */
631
    qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1,
632
						       b_det, dy2),
633
					 den_det);
634
    if (_cairo_int64_eq (qr.rem, den_det))
635
	return FALSE;
636
#if 0
637
    intersection->y.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
638
#else
639
    intersection->y.exactness = EXACT;
640
    if (! _cairo_int64_is_zero (qr.rem)) {
641
	if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
642
	    qr.rem = _cairo_int64_negate (qr.rem);
643
	qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
644
	if (_cairo_int64_ge (qr.rem, den_det)) {
645
	    qr.quo = _cairo_int64_add (qr.quo,
646
				       _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
647
	} else
648
	    intersection->y.exactness = INEXACT;
649
    }
650
#endif
651
    intersection->y.ordinate = _cairo_int64_to_int32 (qr.quo);
652
 
653
    return TRUE;
654
}
655
 
656
static int
657
_cairo_bo_intersect_ordinate_32_compare (cairo_bo_intersect_ordinate_t	a,
658
					 int32_t			b)
659
{
660
    /* First compare the quotient */
661
    if (a.ordinate > b)
662
	return +1;
663
    if (a.ordinate < b)
664
	return -1;
665
    /* With quotient identical, if remainder is 0 then compare equal */
666
    /* Otherwise, the non-zero remainder makes a > b */
667
    return INEXACT == a.exactness;
668
}
669
 
670
/* Does the given edge contain the given point. The point must already
671
 * be known to be contained within the line determined by the edge,
672
 * (most likely the point results from an intersection of this edge
673
 * with another).
674
 *
675
 * If we had exact arithmetic, then this function would simply be a
676
 * matter of examining whether the y value of the point lies within
677
 * the range of y values of the edge. But since intersection points
678
 * are not exact due to being rounded to the nearest integer within
679
 * the available precision, we must also examine the x value of the
680
 * point.
681
 *
682
 * The definition of "contains" here is that the given intersection
683
 * point will be seen by the sweep line after the start event for the
684
 * given edge and before the stop event for the edge. See the comments
685
 * in the implementation for more details.
686
 */
687
static cairo_bool_t
688
_cairo_bo_edge_contains_intersect_point (cairo_bo_edge_t		*edge,
689
					 cairo_bo_intersect_point_t	*point)
690
{
691
    int cmp_top, cmp_bottom;
692
 
693
    /* XXX: When running the actual algorithm, we don't actually need to
694
     * compare against edge->top at all here, since any intersection above
695
     * top is eliminated early via a slope comparison. We're leaving these
696
     * here for now only for the sake of the quadratic-time intersection
697
     * finder which needs them.
698
     */
699
 
700
    cmp_top = _cairo_bo_intersect_ordinate_32_compare (point->y,
701
						       edge->edge.top);
702
    cmp_bottom = _cairo_bo_intersect_ordinate_32_compare (point->y,
703
							  edge->edge.bottom);
704
 
705
    if (cmp_top < 0 || cmp_bottom > 0)
706
    {
707
	return FALSE;
708
    }
709
 
710
    if (cmp_top > 0 && cmp_bottom < 0)
711
    {
712
	return TRUE;
713
    }
714
 
715
    /* At this stage, the point lies on the same y value as either
716
     * edge->top or edge->bottom, so we have to examine the x value in
717
     * order to properly determine containment. */
718
 
719
    /* If the y value of the point is the same as the y value of the
720
     * top of the edge, then the x value of the point must be greater
721
     * to be considered as inside the edge. Similarly, if the y value
722
     * of the point is the same as the y value of the bottom of the
723
     * edge, then the x value of the point must be less to be
724
     * considered as inside. */
725
 
726
    if (cmp_top == 0) {
727
	cairo_fixed_t top_x;
728
 
729
	top_x = _line_compute_intersection_x_for_y (&edge->edge.line,
730
						    edge->edge.top);
731
	return _cairo_bo_intersect_ordinate_32_compare (point->x, top_x) > 0;
732
    } else { /* cmp_bottom == 0 */
733
	cairo_fixed_t bot_x;
734
 
735
	bot_x = _line_compute_intersection_x_for_y (&edge->edge.line,
736
						    edge->edge.bottom);
737
	return _cairo_bo_intersect_ordinate_32_compare (point->x, bot_x) < 0;
738
    }
739
}
740
 
741
/* Compute the intersection of two edges. The result is provided as a
742
 * coordinate pair of 128-bit integers.
743
 *
744
 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection
745
 * that is within both edges, %CAIRO_BO_STATUS_NO_INTERSECTION if the
746
 * intersection of the lines defined by the edges occurs outside of
747
 * one or both edges, and %CAIRO_BO_STATUS_PARALLEL if the two edges
748
 * are exactly parallel.
749
 *
750
 * Note that when determining if a candidate intersection is "inside"
751
 * an edge, we consider both the infinitesimal shortening and the
752
 * infinitesimal tilt rules described by John Hobby. Specifically, if
753
 * the intersection is exactly the same as an edge point, it is
754
 * effectively outside (no intersection is returned). Also, if the
755
 * intersection point has the same
756
 */
757
static cairo_bool_t
758
_cairo_bo_edge_intersect (cairo_bo_edge_t	*a,
759
			  cairo_bo_edge_t	*b,
760
			  cairo_bo_point32_t	*intersection)
761
{
762
    cairo_bo_intersect_point_t quorem;
763
 
764
    if (! intersect_lines (a, b, &quorem))
765
	return FALSE;
766
 
767
    if (! _cairo_bo_edge_contains_intersect_point (a, &quorem))
768
	return FALSE;
769
 
770
    if (! _cairo_bo_edge_contains_intersect_point (b, &quorem))
771
	return FALSE;
772
 
773
    /* Now that we've correctly compared the intersection point and
774
     * determined that it lies within the edge, then we know that we
775
     * no longer need any more bits of storage for the intersection
776
     * than we do for our edge coordinates. We also no longer need the
777
     * remainder from the division. */
778
    intersection->x = quorem.x.ordinate;
779
    intersection->y = quorem.y.ordinate;
780
 
781
    return TRUE;
782
}
783
 
784
static inline int
785
cairo_bo_event_compare (const cairo_bo_event_t *a,
786
			const cairo_bo_event_t *b)
787
{
788
    int cmp;
789
 
790
    cmp = _cairo_bo_point32_compare (&a->point, &b->point);
791
    if (cmp)
792
	return cmp;
793
 
794
    cmp = a->type - b->type;
795
    if (cmp)
796
	return cmp;
797
 
798
    return a - b;
799
}
800
 
801
static inline void
802
_pqueue_init (pqueue_t *pq)
803
{
804
    pq->max_size = ARRAY_LENGTH (pq->elements_embedded);
805
    pq->size = 0;
806
 
807
    pq->elements = pq->elements_embedded;
808
}
809
 
810
static inline void
811
_pqueue_fini (pqueue_t *pq)
812
{
813
    if (pq->elements != pq->elements_embedded)
814
	free (pq->elements);
815
}
816
 
817
static cairo_status_t
818
_pqueue_grow (pqueue_t *pq)
819
{
820
    cairo_bo_event_t **new_elements;
821
    pq->max_size *= 2;
822
 
823
    if (pq->elements == pq->elements_embedded) {
824
	new_elements = _cairo_malloc_ab (pq->max_size,
825
					 sizeof (cairo_bo_event_t *));
826
	if (unlikely (new_elements == NULL))
827
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
828
 
829
	memcpy (new_elements, pq->elements_embedded,
830
		sizeof (pq->elements_embedded));
831
    } else {
832
	new_elements = _cairo_realloc_ab (pq->elements,
833
					  pq->max_size,
834
					  sizeof (cairo_bo_event_t *));
835
	if (unlikely (new_elements == NULL))
836
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
837
    }
838
 
839
    pq->elements = new_elements;
840
    return CAIRO_STATUS_SUCCESS;
841
}
842
 
843
static inline cairo_status_t
844
_pqueue_push (pqueue_t *pq, cairo_bo_event_t *event)
845
{
846
    cairo_bo_event_t **elements;
847
    int i, parent;
848
 
849
    if (unlikely (pq->size + 1 == pq->max_size)) {
850
	cairo_status_t status;
851
 
852
	status = _pqueue_grow (pq);
853
	if (unlikely (status))
854
	    return status;
855
    }
856
 
857
    elements = pq->elements;
858
 
859
    for (i = ++pq->size;
860
	 i != PQ_FIRST_ENTRY &&
861
	 cairo_bo_event_compare (event,
862
				 elements[parent = PQ_PARENT_INDEX (i)]) < 0;
863
	 i = parent)
864
    {
865
	elements[i] = elements[parent];
866
    }
867
 
868
    elements[i] = event;
869
 
870
    return CAIRO_STATUS_SUCCESS;
871
}
872
 
873
static inline void
874
_pqueue_pop (pqueue_t *pq)
875
{
876
    cairo_bo_event_t **elements = pq->elements;
877
    cairo_bo_event_t *tail;
878
    int child, i;
879
 
880
    tail = elements[pq->size--];
881
    if (pq->size == 0) {
882
	elements[PQ_FIRST_ENTRY] = NULL;
883
	return;
884
    }
885
 
886
    for (i = PQ_FIRST_ENTRY;
887
	 (child = PQ_LEFT_CHILD_INDEX (i)) <= pq->size;
888
	 i = child)
889
    {
890
	if (child != pq->size &&
891
	    cairo_bo_event_compare (elements[child+1],
892
				    elements[child]) < 0)
893
	{
894
	    child++;
895
	}
896
 
897
	if (cairo_bo_event_compare (elements[child], tail) >= 0)
898
	    break;
899
 
900
	elements[i] = elements[child];
901
    }
902
    elements[i] = tail;
903
}
904
 
905
static inline cairo_status_t
906
_cairo_bo_event_queue_insert (cairo_bo_event_queue_t	*queue,
907
			      cairo_bo_event_type_t	 type,
908
			      cairo_bo_edge_t		*e1,
909
			      cairo_bo_edge_t		*e2,
910
			      const cairo_point_t	 *point)
911
{
912
    cairo_bo_queue_event_t *event;
913
 
914
    event = _cairo_freepool_alloc (&queue->pool);
915
    if (unlikely (event == NULL))
916
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);
917
 
918
    event->type = type;
919
    event->e1 = e1;
920
    event->e2 = e2;
921
    event->point = *point;
922
 
923
    return _pqueue_push (&queue->pqueue, (cairo_bo_event_t *) event);
924
}
925
 
926
static void
927
_cairo_bo_event_queue_delete (cairo_bo_event_queue_t *queue,
928
			      cairo_bo_event_t	     *event)
929
{
930
    _cairo_freepool_free (&queue->pool, event);
931
}
932
 
933
static cairo_bo_event_t *
934
_cairo_bo_event_dequeue (cairo_bo_event_queue_t *event_queue)
935
{
936
    cairo_bo_event_t *event, *cmp;
937
 
938
    event = event_queue->pqueue.elements[PQ_FIRST_ENTRY];
939
    cmp = *event_queue->start_events;
940
    if (event == NULL ||
941
	(cmp != NULL && cairo_bo_event_compare (cmp, event) < 0))
942
    {
943
	event = cmp;
944
	event_queue->start_events++;
945
    }
946
    else
947
    {
948
	_pqueue_pop (&event_queue->pqueue);
949
    }
950
 
951
    return event;
952
}
953
 
954
CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,
955
			cairo_bo_event_t *,
956
			cairo_bo_event_compare)
957
 
958
static void
959
_cairo_bo_event_queue_init (cairo_bo_event_queue_t	 *event_queue,
960
			    cairo_bo_event_t		**start_events,
961
			    int				  num_events)
962
{
963
    _cairo_bo_event_queue_sort (start_events, num_events);
964
    start_events[num_events] = NULL;
965
 
966
    event_queue->start_events = start_events;
967
 
968
    _cairo_freepool_init (&event_queue->pool,
969
			  sizeof (cairo_bo_queue_event_t));
970
    _pqueue_init (&event_queue->pqueue);
971
    event_queue->pqueue.elements[PQ_FIRST_ENTRY] = NULL;
972
}
973
 
974
static cairo_status_t
975
event_queue_insert_stop (cairo_bo_event_queue_t	*event_queue,
976
			 cairo_bo_edge_t		*edge)
977
{
978
    cairo_bo_point32_t point;
979
 
980
    point.y = edge->edge.bottom;
981
    point.x = _line_compute_intersection_x_for_y (&edge->edge.line,
982
						  point.y);
983
    return _cairo_bo_event_queue_insert (event_queue,
984
					 CAIRO_BO_EVENT_TYPE_STOP,
985
					 edge, NULL,
986
					 &point);
987
}
988
 
989
static void
990
_cairo_bo_event_queue_fini (cairo_bo_event_queue_t *event_queue)
991
{
992
    _pqueue_fini (&event_queue->pqueue);
993
    _cairo_freepool_fini (&event_queue->pool);
994
}
995
 
996
static inline cairo_status_t
997
event_queue_insert_if_intersect_below_current_y (cairo_bo_event_queue_t	*event_queue,
998
						 cairo_bo_edge_t	*left,
999
						 cairo_bo_edge_t *right)
1000
{
1001
    cairo_bo_point32_t intersection;
1002
 
1003
    if (_line_equal (&left->edge.line, &right->edge.line))
1004
	return CAIRO_STATUS_SUCCESS;
1005
 
1006
    /* The names "left" and "right" here are correct descriptions of
1007
     * the order of the two edges within the active edge list. So if a
1008
     * slope comparison also puts left less than right, then we know
1009
     * that the intersection of these two segments has already
1010
     * occurred before the current sweep line position. */
1011
    if (_slope_compare (left, right) <= 0)
1012
	return CAIRO_STATUS_SUCCESS;
1013
 
1014
    if (! _cairo_bo_edge_intersect (left, right, &intersection))
1015
	return CAIRO_STATUS_SUCCESS;
1016
 
1017
    return _cairo_bo_event_queue_insert (event_queue,
1018
					 CAIRO_BO_EVENT_TYPE_INTERSECTION,
1019
					 left, right,
1020
					 &intersection);
1021
}
1022
 
1023
static void
1024
_cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line)
1025
{
1026
    sweep_line->head = NULL;
1027
    sweep_line->current_y = INT32_MIN;
1028
    sweep_line->current_edge = NULL;
1029
}
1030
 
1031
static cairo_status_t
1032
sweep_line_insert (cairo_bo_sweep_line_t	*sweep_line,
1033
		   cairo_bo_edge_t		*edge)
1034
{
1035
    if (sweep_line->current_edge != NULL) {
1036
	cairo_bo_edge_t *prev, *next;
1037
	int cmp;
1038
 
1039
	cmp = _cairo_bo_sweep_line_compare_edges (sweep_line,
1040
						  sweep_line->current_edge,
1041
						  edge);
1042
	if (cmp < 0) {
1043
	    prev = sweep_line->current_edge;
1044
	    next = prev->next;
1045
	    while (next != NULL &&
1046
		   _cairo_bo_sweep_line_compare_edges (sweep_line,
1047
						       next, edge) < 0)
1048
	    {
1049
		prev = next, next = prev->next;
1050
	    }
1051
 
1052
	    prev->next = edge;
1053
	    edge->prev = prev;
1054
	    edge->next = next;
1055
	    if (next != NULL)
1056
		next->prev = edge;
1057
	} else if (cmp > 0) {
1058
	    next = sweep_line->current_edge;
1059
	    prev = next->prev;
1060
	    while (prev != NULL &&
1061
		   _cairo_bo_sweep_line_compare_edges (sweep_line,
1062
						       prev, edge) > 0)
1063
	    {
1064
		next = prev, prev = next->prev;
1065
	    }
1066
 
1067
	    next->prev = edge;
1068
	    edge->next = next;
1069
	    edge->prev = prev;
1070
	    if (prev != NULL)
1071
		prev->next = edge;
1072
	    else
1073
		sweep_line->head = edge;
1074
	} else {
1075
	    prev = sweep_line->current_edge;
1076
	    edge->prev = prev;
1077
	    edge->next = prev->next;
1078
	    if (prev->next != NULL)
1079
		prev->next->prev = edge;
1080
	    prev->next = edge;
1081
	}
1082
    } else {
1083
	sweep_line->head = edge;
1084
    }
1085
 
1086
    sweep_line->current_edge = edge;
1087
 
1088
    return CAIRO_STATUS_SUCCESS;
1089
}
1090
 
1091
static void
1092
_cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t	*sweep_line,
1093
			     cairo_bo_edge_t	*edge)
1094
{
1095
    if (edge->prev != NULL)
1096
	edge->prev->next = edge->next;
1097
    else
1098
	sweep_line->head = edge->next;
1099
 
1100
    if (edge->next != NULL)
1101
	edge->next->prev = edge->prev;
1102
 
1103
    if (sweep_line->current_edge == edge)
1104
	sweep_line->current_edge = edge->prev ? edge->prev : edge->next;
1105
}
1106
 
1107
static void
1108
_cairo_bo_sweep_line_swap (cairo_bo_sweep_line_t	*sweep_line,
1109
			   cairo_bo_edge_t		*left,
1110
			   cairo_bo_edge_t		*right)
1111
{
1112
    if (left->prev != NULL)
1113
	left->prev->next = right;
1114
    else
1115
	sweep_line->head = right;
1116
 
1117
    if (right->next != NULL)
1118
	right->next->prev = left;
1119
 
1120
    left->next = right->next;
1121
    right->next = left;
1122
 
1123
    right->prev = left->prev;
1124
    left->prev = right;
1125
}
1126
 
1127
static inline cairo_bool_t
1128
edges_colinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b)
1129
{
1130
    if (_line_equal (&a->edge.line, &b->edge.line))
1131
	return TRUE;
1132
 
1133
    if (_slope_compare (a, b))
1134
	return FALSE;
1135
 
1136
    /* The choice of y is not truly arbitrary since we must guarantee that it
1137
     * is greater than the start of either line.
1138
     */
1139
    if (a->edge.line.p1.y == b->edge.line.p1.y) {
1140
	return a->edge.line.p1.x == b->edge.line.p1.x;
1141
    } else if (a->edge.line.p1.y < b->edge.line.p1.y) {
1142
	return edge_compare_for_y_against_x (b,
1143
					     a->edge.line.p1.y,
1144
					     a->edge.line.p1.x) == 0;
1145
    } else {
1146
	return edge_compare_for_y_against_x (a,
1147
					     b->edge.line.p1.y,
1148
					     b->edge.line.p1.x) == 0;
1149
    }
1150
}
1151
 
1152
static void
1153
edges_end (cairo_bo_edge_t	*left,
1154
	   int32_t		 bot,
1155
	   cairo_polygon_t	*polygon)
1156
{
1157
    cairo_bo_deferred_t *l = &left->deferred;
1158
    cairo_bo_edge_t *right = l->other;
1159
 
1160
    assert(right->deferred.other == NULL);
1161
    if (likely (l->top < bot)) {
1162
	_cairo_polygon_add_line (polygon, &left->edge.line, l->top, bot, 1);
1163
	_cairo_polygon_add_line (polygon, &right->edge.line, l->top, bot, -1);
1164
    }
1165
 
1166
    l->other = NULL;
1167
}
1168
 
1169
static inline void
1170
edges_start_or_continue (cairo_bo_edge_t	*left,
1171
			 cairo_bo_edge_t	*right,
1172
			 int			 top,
1173
			 cairo_polygon_t	*polygon)
1174
{
1175
    assert (right->deferred.other == NULL);
1176
 
1177
    if (left->deferred.other == right)
1178
	return;
1179
 
1180
    if (left->deferred.other != NULL) {
1181
	if (right != NULL && edges_colinear (left->deferred.other, right)) {
1182
	    cairo_bo_edge_t *old = left->deferred.other;
1183
 
1184
	    /* continuation on right, extend right to cover both */
1185
	    assert (old->deferred.other == NULL);
1186
	    assert (old->edge.line.p2.y > old->edge.line.p1.y);
1187
 
1188
	    if (old->edge.line.p1.y < right->edge.line.p1.y)
1189
		right->edge.line.p1 = old->edge.line.p1;
1190
	    if (old->edge.line.p2.y > right->edge.line.p2.y)
1191
		right->edge.line.p2 = old->edge.line.p2;
1192
	    left->deferred.other = right;
1193
	    return;
1194
	}
1195
 
1196
	edges_end (left, top, polygon);
1197
    }
1198
 
1199
    if (right != NULL && ! edges_colinear (left, right)) {
1200
	left->deferred.top = top;
1201
	left->deferred.other = right;
1202
    }
1203
}
1204
 
1205
#define is_zero(w) ((w)[0] == 0 || (w)[1] == 0)
1206
 
1207
static inline void
1208
active_edges (cairo_bo_edge_t		*left,
1209
	      int32_t			 top,
1210
	      cairo_polygon_t	        *polygon)
1211
{
1212
	cairo_bo_edge_t *right;
1213
	int winding[2] = {0, 0};
1214
 
1215
	/* Yes, this is naive. Consider this a placeholder. */
1216
 
1217
	while (left != NULL) {
1218
	    assert (is_zero (winding));
1219
 
1220
	    do {
1221
		winding[left->a_or_b] += left->edge.dir;
1222
		if (! is_zero (winding))
1223
		    break;
1224
 
1225
		if unlikely ((left->deferred.other))
1226
		    edges_end (left, top, polygon);
1227
 
1228
		left = left->next;
1229
		if (! left)
1230
		    return;
1231
	    } while (1);
1232
 
1233
	    right = left->next;
1234
	    do {
1235
		if unlikely ((right->deferred.other))
1236
		    edges_end (right, top, polygon);
1237
 
1238
		winding[right->a_or_b] += right->edge.dir;
1239
		if (is_zero (winding)) {
1240
		    if (right->next == NULL ||
1241
			! edges_colinear (right, right->next))
1242
			break;
1243
		}
1244
 
1245
		right = right->next;
1246
	    } while (1);
1247
 
1248
	    edges_start_or_continue (left, right, top, polygon);
1249
 
1250
	    left = right->next;
1251
	}
1252
}
1253
 
1254
static cairo_status_t
1255
intersection_sweep (cairo_bo_event_t   **start_events,
1256
		    int			 num_events,
1257
		    cairo_polygon_t	*polygon)
1258
{
1259
    cairo_status_t status = CAIRO_STATUS_SUCCESS; /* silence compiler */
1260
    cairo_bo_event_queue_t event_queue;
1261
    cairo_bo_sweep_line_t sweep_line;
1262
    cairo_bo_event_t *event;
1263
    cairo_bo_edge_t *left, *right;
1264
    cairo_bo_edge_t *e1, *e2;
1265
 
1266
    _cairo_bo_event_queue_init (&event_queue, start_events, num_events);
1267
    _cairo_bo_sweep_line_init (&sweep_line);
1268
 
1269
    while ((event = _cairo_bo_event_dequeue (&event_queue))) {
1270
	if (event->point.y != sweep_line.current_y) {
1271
	    active_edges (sweep_line.head,
1272
			  sweep_line.current_y,
1273
			  polygon);
1274
	    sweep_line.current_y = event->point.y;
1275
	}
1276
 
1277
	switch (event->type) {
1278
	case CAIRO_BO_EVENT_TYPE_START:
1279
	    e1 = &((cairo_bo_start_event_t *) event)->edge;
1280
 
1281
	    status = sweep_line_insert (&sweep_line, e1);
1282
	    if (unlikely (status))
1283
		goto unwind;
1284
 
1285
	    status = event_queue_insert_stop (&event_queue, e1);
1286
	    if (unlikely (status))
1287
		goto unwind;
1288
 
1289
	    left = e1->prev;
1290
	    right = e1->next;
1291
 
1292
	    if (left != NULL) {
1293
		status = event_queue_insert_if_intersect_below_current_y (&event_queue, left, e1);
1294
		if (unlikely (status))
1295
		    goto unwind;
1296
	    }
1297
 
1298
	    if (right != NULL) {
1299
		status = event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right);
1300
		if (unlikely (status))
1301
		    goto unwind;
1302
	    }
1303
 
1304
	    break;
1305
 
1306
	case CAIRO_BO_EVENT_TYPE_STOP:
1307
	    e1 = ((cairo_bo_queue_event_t *) event)->e1;
1308
	    _cairo_bo_event_queue_delete (&event_queue, event);
1309
 
1310
	    if (e1->deferred.other)
1311
		edges_end (e1, sweep_line.current_y, polygon);
1312
 
1313
	    left = e1->prev;
1314
	    right = e1->next;
1315
 
1316
	    _cairo_bo_sweep_line_delete (&sweep_line, e1);
1317
 
1318
	    if (left != NULL && right != NULL) {
1319
		status = event_queue_insert_if_intersect_below_current_y (&event_queue, left, right);
1320
		if (unlikely (status))
1321
		    goto unwind;
1322
	    }
1323
 
1324
	    break;
1325
 
1326
	case CAIRO_BO_EVENT_TYPE_INTERSECTION:
1327
	    e1 = ((cairo_bo_queue_event_t *) event)->e1;
1328
	    e2 = ((cairo_bo_queue_event_t *) event)->e2;
1329
	    _cairo_bo_event_queue_delete (&event_queue, event);
1330
 
1331
	    /* skip this intersection if its edges are not adjacent */
1332
	    if (e2 != e1->next)
1333
		break;
1334
 
1335
	    if (e1->deferred.other)
1336
		edges_end (e1, sweep_line.current_y, polygon);
1337
	    if (e2->deferred.other)
1338
		edges_end (e2, sweep_line.current_y, polygon);
1339
 
1340
	    left = e1->prev;
1341
	    right = e2->next;
1342
 
1343
	    _cairo_bo_sweep_line_swap (&sweep_line, e1, e2);
1344
 
1345
	    /* after the swap e2 is left of e1 */
1346
 
1347
	    if (left != NULL) {
1348
		status = event_queue_insert_if_intersect_below_current_y (&event_queue, left, e2);
1349
		if (unlikely (status))
1350
		    goto unwind;
1351
	    }
1352
 
1353
	    if (right != NULL) {
1354
		status = event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right);
1355
		if (unlikely (status))
1356
		    goto unwind;
1357
	    }
1358
 
1359
	    break;
1360
	}
1361
    }
1362
 
1363
 unwind:
1364
    _cairo_bo_event_queue_fini (&event_queue);
1365
 
1366
    return status;
1367
}
1368
 
1369
cairo_status_t
1370
_cairo_polygon_intersect (cairo_polygon_t *a, int winding_a,
1371
			  cairo_polygon_t *b, int winding_b)
1372
{
1373
    cairo_status_t status;
1374
    cairo_bo_start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_start_event_t)];
1375
    cairo_bo_start_event_t *events;
1376
    cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
1377
    cairo_bo_event_t **event_ptrs;
1378
    int num_events;
1379
    int i, j;
1380
 
1381
    /* XXX lazy */
1382
    if (winding_a != CAIRO_FILL_RULE_WINDING) {
1383
	status = _cairo_polygon_reduce (a, winding_a);
1384
	if (unlikely (status))
1385
	    return status;
1386
    }
1387
 
1388
    if (winding_b != CAIRO_FILL_RULE_WINDING) {
1389
	status = _cairo_polygon_reduce (b, winding_b);
1390
	if (unlikely (status))
1391
	    return status;
1392
    }
1393
 
1394
    if (unlikely (0 == a->num_edges))
1395
	return CAIRO_STATUS_SUCCESS;
1396
 
1397
    if (unlikely (0 == b->num_edges)) {
1398
	a->num_edges = 0;
1399
	return CAIRO_STATUS_SUCCESS;
1400
    }
1401
 
1402
    events = stack_events;
1403
    event_ptrs = stack_event_ptrs;
1404
    num_events = a->num_edges + b->num_edges;
1405
    if (num_events > ARRAY_LENGTH (stack_events)) {
1406
	events = _cairo_malloc_ab_plus_c (num_events,
1407
					  sizeof (cairo_bo_start_event_t) +
1408
					  sizeof (cairo_bo_event_t *),
1409
					  sizeof (cairo_bo_event_t *));
1410
	if (unlikely (events == NULL))
1411
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
1412
 
1413
	event_ptrs = (cairo_bo_event_t **) (events + num_events);
1414
    }
1415
 
1416
    j = 0;
1417
    for (i = 0; i < a->num_edges; i++) {
1418
	event_ptrs[j] = (cairo_bo_event_t *) &events[j];
1419
 
1420
	events[j].type = CAIRO_BO_EVENT_TYPE_START;
1421
	events[j].point.y = a->edges[i].top;
1422
	events[j].point.x =
1423
	    _line_compute_intersection_x_for_y (&a->edges[i].line,
1424
						events[j].point.y);
1425
 
1426
	events[j].edge.a_or_b = 0;
1427
	events[j].edge.edge = a->edges[i];
1428
	events[j].edge.deferred.other = NULL;
1429
	events[j].edge.prev = NULL;
1430
	events[j].edge.next = NULL;
1431
	j++;
1432
    }
1433
 
1434
    for (i = 0; i < b->num_edges; i++) {
1435
	event_ptrs[j] = (cairo_bo_event_t *) &events[j];
1436
 
1437
	events[j].type = CAIRO_BO_EVENT_TYPE_START;
1438
	events[j].point.y = b->edges[i].top;
1439
	events[j].point.x =
1440
	    _line_compute_intersection_x_for_y (&b->edges[i].line,
1441
						events[j].point.y);
1442
 
1443
	events[j].edge.a_or_b = 1;
1444
	events[j].edge.edge = b->edges[i];
1445
	events[j].edge.deferred.other = NULL;
1446
	events[j].edge.prev = NULL;
1447
	events[j].edge.next = NULL;
1448
	j++;
1449
    }
1450
    assert (j == num_events);
1451
 
1452
#if 0
1453
    {
1454
	FILE *file = fopen ("clip_a.txt", "w");
1455
	_cairo_debug_print_polygon (file, a);
1456
	fclose (file);
1457
    }
1458
    {
1459
	FILE *file = fopen ("clip_b.txt", "w");
1460
	_cairo_debug_print_polygon (file, b);
1461
	fclose (file);
1462
    }
1463
#endif
1464
 
1465
    a->num_edges = 0;
1466
    status = intersection_sweep (event_ptrs, num_events, a);
1467
    if (events != stack_events)
1468
	free (events);
1469
 
1470
#if 0
1471
    {
1472
	FILE *file = fopen ("clip_result.txt", "w");
1473
	_cairo_debug_print_polygon (file, a);
1474
	fclose (file);
1475
    }
1476
#endif
1477
 
1478
    return status;
1479
}
1480
 
1481
cairo_status_t
1482
_cairo_polygon_intersect_with_boxes (cairo_polygon_t *polygon,
1483
				     cairo_fill_rule_t *winding,
1484
				     cairo_box_t *boxes,
1485
				     int num_boxes)
1486
{
1487
    cairo_polygon_t b;
1488
    cairo_status_t status;
1489
    int n;
1490
 
1491
    if (num_boxes == 0) {
1492
	polygon->num_edges = 0;
1493
	return CAIRO_STATUS_SUCCESS;
1494
    }
1495
 
1496
    for (n = 0; n < num_boxes; n++) {
1497
	if (polygon->extents.p1.x >= boxes[n].p1.x &&
1498
	    polygon->extents.p2.x <= boxes[n].p2.x &&
1499
	    polygon->extents.p1.y >= boxes[n].p1.y &&
1500
	    polygon->extents.p2.y <= boxes[n].p2.y)
1501
	{
1502
	    return CAIRO_STATUS_SUCCESS;
1503
	}
1504
    }
1505
 
1506
    _cairo_polygon_init (&b, NULL, 0);
1507
    for (n = 0; n < num_boxes; n++) {
1508
	if (boxes[n].p2.x > polygon->extents.p1.x &&
1509
	    boxes[n].p1.x < polygon->extents.p2.x &&
1510
	    boxes[n].p2.y > polygon->extents.p1.y &&
1511
	    boxes[n].p1.y < polygon->extents.p2.y)
1512
	{
1513
	    cairo_point_t p1, p2;
1514
 
1515
	    p1.y = boxes[n].p1.y;
1516
	    p2.y = boxes[n].p2.y;
1517
 
1518
	    p2.x = p1.x = boxes[n].p1.x;
1519
	    _cairo_polygon_add_external_edge (&b, &p1, &p2);
1520
 
1521
	    p2.x = p1.x = boxes[n].p2.x;
1522
	    _cairo_polygon_add_external_edge (&b, &p2, &p1);
1523
	}
1524
    }
1525
 
1526
    status = _cairo_polygon_intersect (polygon, *winding,
1527
				       &b, CAIRO_FILL_RULE_WINDING);
1528
    _cairo_polygon_fini (&b);
1529
 
1530
    *winding = CAIRO_FILL_RULE_WINDING;
1531
    return status;
1532
}