Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4358 Serge 1
/*
2
 * Mesa 3-D graphics library
3
 *
4
 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a
7
 * copy of this software and associated documentation files (the "Software"),
8
 * to deal in the Software without restriction, including without limitation
9
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10
 * and/or sell copies of the Software, and to permit persons to whom the
11
 * Software is furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included
14
 * in all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22
 * OTHER DEALINGS IN THE SOFTWARE.
23
 */
24
 
25
 
26
/*
27
 * Antialiased Triangle Rasterizer Template
28
 *
29
 * This file is #include'd to generate custom AA triangle rasterizers.
30
 * NOTE: this code hasn't been optimized yet.  That'll come after it
31
 * works correctly.
32
 *
33
 * The following macros may be defined to indicate what auxillary information
34
 * must be copmuted across the triangle:
35
 *    DO_Z         - if defined, compute Z values
36
 *    DO_ATTRIBS   - if defined, compute texcoords, varying, etc.
37
 */
38
 
39
/*void triangle( struct gl_context *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
40
{
41
   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
42
   const GLfloat *p0 = v0->attrib[VARYING_SLOT_POS];
43
   const GLfloat *p1 = v1->attrib[VARYING_SLOT_POS];
44
   const GLfloat *p2 = v2->attrib[VARYING_SLOT_POS];
45
   const SWvertex *vMin, *vMid, *vMax;
46
   GLint iyMin, iyMax;
47
   GLfloat yMin, yMax;
48
   GLboolean ltor;
49
   GLfloat majDx, majDy;  /* major (i.e. long) edge dx and dy */
50
 
51
   SWspan span;
52
 
53
#ifdef DO_Z
54
   GLfloat zPlane[4];
55
#endif
56
   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
57
#if defined(DO_ATTRIBS)
58
   GLfloat attrPlane[VARYING_SLOT_MAX][4][4];
59
   GLfloat wPlane[4];  /* win[3] */
60
#endif
61
   GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceCullSign;
62
 
63
   (void) swrast;
64
 
65
   INIT_SPAN(span, GL_POLYGON);
66
   span.arrayMask = SPAN_COVERAGE;
67
 
68
   /* determine bottom to top order of vertices */
69
   {
70
      GLfloat y0 = v0->attrib[VARYING_SLOT_POS][1];
71
      GLfloat y1 = v1->attrib[VARYING_SLOT_POS][1];
72
      GLfloat y2 = v2->attrib[VARYING_SLOT_POS][1];
73
      if (y0 <= y1) {
74
	 if (y1 <= y2) {
75
	    vMin = v0;   vMid = v1;   vMax = v2;   /* y0<=y1<=y2 */
76
	 }
77
	 else if (y2 <= y0) {
78
	    vMin = v2;   vMid = v0;   vMax = v1;   /* y2<=y0<=y1 */
79
	 }
80
	 else {
81
	    vMin = v0;   vMid = v2;   vMax = v1;  bf = -bf; /* y0<=y2<=y1 */
82
	 }
83
      }
84
      else {
85
	 if (y0 <= y2) {
86
	    vMin = v1;   vMid = v0;   vMax = v2;  bf = -bf; /* y1<=y0<=y2 */
87
	 }
88
	 else if (y2 <= y1) {
89
	    vMin = v2;   vMid = v1;   vMax = v0;  bf = -bf; /* y2<=y1<=y0 */
90
	 }
91
	 else {
92
	    vMin = v1;   vMid = v2;   vMax = v0;   /* y1<=y2<=y0 */
93
	 }
94
      }
95
   }
96
 
97
   majDx = vMax->attrib[VARYING_SLOT_POS][0] - vMin->attrib[VARYING_SLOT_POS][0];
98
   majDy = vMax->attrib[VARYING_SLOT_POS][1] - vMin->attrib[VARYING_SLOT_POS][1];
99
 
100
   /* front/back-face determination and cullling */
101
   {
102
      const GLfloat botDx = vMid->attrib[VARYING_SLOT_POS][0] - vMin->attrib[VARYING_SLOT_POS][0];
103
      const GLfloat botDy = vMid->attrib[VARYING_SLOT_POS][1] - vMin->attrib[VARYING_SLOT_POS][1];
104
      const GLfloat area = majDx * botDy - botDx * majDy;
105
      /* Do backface culling */
106
      if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
107
	 return;
108
      ltor = (GLboolean) (area < 0.0F);
109
 
110
      span.facing = area * swrast->_BackfaceSign > 0.0F;
111
   }
112
 
113
   /* Plane equation setup:
114
    * We evaluate plane equations at window (x,y) coordinates in order
115
    * to compute color, Z, fog, texcoords, etc.  This isn't terribly
116
    * efficient but it's easy and reliable.
117
    */
118
#ifdef DO_Z
119
   compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
120
   span.arrayMask |= SPAN_Z;
121
#endif
122
   if (ctx->Light.ShadeModel == GL_SMOOTH) {
123
      compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane);
124
      compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane);
125
      compute_plane(p0, p1, p2, v0->color[BCOMP], v1->color[BCOMP], v2->color[BCOMP], bPlane);
126
      compute_plane(p0, p1, p2, v0->color[ACOMP], v1->color[ACOMP], v2->color[ACOMP], aPlane);
127
   }
128
   else {
129
      constant_plane(v2->color[RCOMP], rPlane);
130
      constant_plane(v2->color[GCOMP], gPlane);
131
      constant_plane(v2->color[BCOMP], bPlane);
132
      constant_plane(v2->color[ACOMP], aPlane);
133
   }
134
   span.arrayMask |= SPAN_RGBA;
135
#if defined(DO_ATTRIBS)
136
   {
137
      const GLfloat invW0 = v0->attrib[VARYING_SLOT_POS][3];
138
      const GLfloat invW1 = v1->attrib[VARYING_SLOT_POS][3];
139
      const GLfloat invW2 = v2->attrib[VARYING_SLOT_POS][3];
140
      compute_plane(p0, p1, p2, invW0, invW1, invW2, wPlane);
141
      span.attrStepX[VARYING_SLOT_POS][3] = plane_dx(wPlane);
142
      span.attrStepY[VARYING_SLOT_POS][3] = plane_dy(wPlane);
143
      ATTRIB_LOOP_BEGIN
144
         GLuint c;
145
         if (swrast->_InterpMode[attr] == GL_FLAT) {
146
            for (c = 0; c < 4; c++) {
147
               constant_plane(v2->attrib[attr][c] * invW2, attrPlane[attr][c]);
148
            }
149
         }
150
         else {
151
            for (c = 0; c < 4; c++) {
152
               const GLfloat a0 = v0->attrib[attr][c] * invW0;
153
               const GLfloat a1 = v1->attrib[attr][c] * invW1;
154
               const GLfloat a2 = v2->attrib[attr][c] * invW2;
155
               compute_plane(p0, p1, p2, a0, a1, a2, attrPlane[attr][c]);
156
            }
157
         }
158
         for (c = 0; c < 4; c++) {
159
            span.attrStepX[attr][c] = plane_dx(attrPlane[attr][c]);
160
            span.attrStepY[attr][c] = plane_dy(attrPlane[attr][c]);
161
         }
162
      ATTRIB_LOOP_END
163
   }
164
#endif
165
 
166
   /* Begin bottom-to-top scan over the triangle.
167
    * The long edge will either be on the left or right side of the
168
    * triangle.  We always scan from the long edge toward the shorter
169
    * edges, stopping when we find that coverage = 0.  If the long edge
170
    * is on the left we scan left-to-right.  Else, we scan right-to-left.
171
    */
172
   yMin = vMin->attrib[VARYING_SLOT_POS][1];
173
   yMax = vMax->attrib[VARYING_SLOT_POS][1];
174
   iyMin = (GLint) yMin;
175
   iyMax = (GLint) yMax + 1;
176
 
177
   if (ltor) {
178
      /* scan left to right */
179
      const GLfloat *pMin = vMin->attrib[VARYING_SLOT_POS];
180
      const GLfloat *pMid = vMid->attrib[VARYING_SLOT_POS];
181
      const GLfloat *pMax = vMax->attrib[VARYING_SLOT_POS];
182
      const GLfloat dxdy = majDx / majDy;
183
      const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
184
      GLint iy;
185
#ifdef _OPENMP
186
#pragma omp parallel for schedule(dynamic) private(iy) firstprivate(span)
187
#endif
188
      for (iy = iyMin; iy < iyMax; iy++) {
189
         GLfloat x = pMin[0] - (yMin - iy) * dxdy;
190
         GLint ix, startX = (GLint) (x - xAdj);
191
         GLuint count;
192
         GLfloat coverage = 0.0F;
193
 
194
#ifdef _OPENMP
195
         /* each thread needs to use a different (global) SpanArrays variable */
196
         span.array = SWRAST_CONTEXT(ctx)->SpanArrays + omp_get_thread_num();
197
#endif
198
         /* skip over fragments with zero coverage */
199
         while (startX < SWRAST_MAX_WIDTH) {
200
            coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
201
            if (coverage > 0.0F)
202
               break;
203
            startX++;
204
         }
205
 
206
         /* enter interior of triangle */
207
         ix = startX;
208
 
209
#if defined(DO_ATTRIBS)
210
         /* compute attributes at left-most fragment */
211
         span.attrStart[VARYING_SLOT_POS][3] = solve_plane(ix + 0.5F, iy + 0.5F, wPlane);
212
         ATTRIB_LOOP_BEGIN
213
            GLuint c;
214
            for (c = 0; c < 4; c++) {
215
               span.attrStart[attr][c] = solve_plane(ix + 0.5F, iy + 0.5F, attrPlane[attr][c]);
216
            }
217
         ATTRIB_LOOP_END
218
#endif
219
 
220
         count = 0;
221
         while (coverage > 0.0F) {
222
            /* (cx,cy) = center of fragment */
223
            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
224
            SWspanarrays *array = span.array;
225
            array->coverage[count] = coverage;
226
#ifdef DO_Z
227
            array->z[count] = (GLuint) solve_plane(cx, cy, zPlane);
228
#endif
229
            array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
230
            array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
231
            array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
232
            array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
233
            ix++;
234
            count++;
235
            coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
236
         }
237
 
238
         if (ix > startX) {
239
            span.x = startX;
240
            span.y = iy;
241
            span.end = (GLuint) ix - (GLuint) startX;
242
            _swrast_write_rgba_span(ctx, &span);
243
         }
244
      }
245
   }
246
   else {
247
      /* scan right to left */
248
      const GLfloat *pMin = vMin->attrib[VARYING_SLOT_POS];
249
      const GLfloat *pMid = vMid->attrib[VARYING_SLOT_POS];
250
      const GLfloat *pMax = vMax->attrib[VARYING_SLOT_POS];
251
      const GLfloat dxdy = majDx / majDy;
252
      const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
253
      GLint iy;
254
#ifdef _OPENMP
255
#pragma omp parallel for schedule(dynamic) private(iy) firstprivate(span)
256
#endif
257
      for (iy = iyMin; iy < iyMax; iy++) {
258
         GLfloat x = pMin[0] - (yMin - iy) * dxdy;
259
         GLint ix, left, startX = (GLint) (x + xAdj);
260
         GLuint count, n;
261
         GLfloat coverage = 0.0F;
262
 
263
#ifdef _OPENMP
264
         /* each thread needs to use a different (global) SpanArrays variable */
265
         span.array = SWRAST_CONTEXT(ctx)->SpanArrays + omp_get_thread_num();
266
#endif
267
         /* make sure we're not past the window edge */
268
         if (startX >= ctx->DrawBuffer->_Xmax) {
269
            startX = ctx->DrawBuffer->_Xmax - 1;
270
         }
271
 
272
         /* skip fragments with zero coverage */
273
         while (startX > 0) {
274
            coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
275
            if (coverage > 0.0F)
276
               break;
277
            startX--;
278
         }
279
 
280
         /* enter interior of triangle */
281
         ix = startX;
282
         count = 0;
283
         while (coverage > 0.0F) {
284
            /* (cx,cy) = center of fragment */
285
            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
286
            SWspanarrays *array = span.array;
287
            ASSERT(ix >= 0);
288
            array->coverage[ix] = coverage;
289
#ifdef DO_Z
290
            array->z[ix] = (GLuint) solve_plane(cx, cy, zPlane);
291
#endif
292
            array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
293
            array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
294
            array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
295
            array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
296
            ix--;
297
            count++;
298
            coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
299
         }
300
 
301
#if defined(DO_ATTRIBS)
302
         /* compute attributes at left-most fragment */
303
         span.attrStart[VARYING_SLOT_POS][3] = solve_plane(ix + 1.5F, iy + 0.5F, wPlane);
304
         ATTRIB_LOOP_BEGIN
305
            GLuint c;
306
            for (c = 0; c < 4; c++) {
307
               span.attrStart[attr][c] = solve_plane(ix + 1.5F, iy + 0.5F, attrPlane[attr][c]);
308
            }
309
         ATTRIB_LOOP_END
310
#endif
311
 
312
         if (startX > ix) {
313
            n = (GLuint) startX - (GLuint) ix;
314
 
315
            left = ix + 1;
316
 
317
            /* shift all values to the left */
318
            /* XXX this is temporary */
319
            {
320
               SWspanarrays *array = span.array;
321
               GLint j;
322
               for (j = 0; j < (GLint) n; j++) {
323
                  array->coverage[j] = array->coverage[j + left];
324
                  COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
325
#ifdef DO_Z
326
                  array->z[j] = array->z[j + left];
327
#endif
328
               }
329
            }
330
 
331
            span.x = left;
332
            span.y = iy;
333
            span.end = n;
334
            _swrast_write_rgba_span(ctx, &span);
335
         }
336
      }
337
   }
338
}
339
 
340
 
341
#undef DO_Z
342
#undef DO_ATTRIBS
343
#undef DO_OCCLUSION_TEST