Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4358 Serge 1
/*
2
 * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3
 * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4
 * Copyright © 2010 Intel Corporation
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a
7
 * copy of this software and associated documentation files (the "Software"),
8
 * to deal in the Software without restriction, including without limitation
9
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10
 * and/or sell copies of the Software, and to permit persons to whom the
11
 * Software is furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice (including the next
14
 * paragraph) shall be included in all copies or substantial portions of the
15
 * Software.
16
 *
17
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23
 * DEALINGS IN THE SOFTWARE.
24
 */
25
 
26
/**
27
 * \file ir_to_mesa.cpp
28
 *
29
 * Translate GLSL IR to Mesa's gl_program representation.
30
 */
31
 
32
#include 
33
#include "main/compiler.h"
34
#include "ir.h"
35
#include "ir_visitor.h"
36
#include "ir_expression_flattening.h"
37
#include "ir_uniform.h"
38
#include "glsl_types.h"
39
#include "glsl_parser_extras.h"
40
#include "../glsl/program.h"
41
#include "ir_optimization.h"
42
#include "ast.h"
43
#include "linker.h"
44
 
45
#include "main/mtypes.h"
46
#include "main/shaderobj.h"
47
#include "program/hash_table.h"
48
 
49
extern "C" {
50
#include "main/shaderapi.h"
51
#include "main/uniforms.h"
52
#include "program/prog_instruction.h"
53
#include "program/prog_optimize.h"
54
#include "program/prog_print.h"
55
#include "program/program.h"
56
#include "program/prog_parameter.h"
57
#include "program/sampler.h"
58
}
59
 
60
class src_reg;
61
class dst_reg;
62
 
63
static int swizzle_for_size(int size);
64
 
65
/**
66
 * This struct is a corresponding struct to Mesa prog_src_register, with
67
 * wider fields.
68
 */
69
class src_reg {
70
public:
71
   src_reg(gl_register_file file, int index, const glsl_type *type)
72
   {
73
      this->file = file;
74
      this->index = index;
75
      if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76
	 this->swizzle = swizzle_for_size(type->vector_elements);
77
      else
78
	 this->swizzle = SWIZZLE_XYZW;
79
      this->negate = 0;
80
      this->reladdr = NULL;
81
   }
82
 
83
   src_reg()
84
   {
85
      this->file = PROGRAM_UNDEFINED;
86
      this->index = 0;
87
      this->swizzle = 0;
88
      this->negate = 0;
89
      this->reladdr = NULL;
90
   }
91
 
92
   explicit src_reg(dst_reg reg);
93
 
94
   gl_register_file file; /**< PROGRAM_* from Mesa */
95
   int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96
   GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97
   int negate; /**< NEGATE_XYZW mask from mesa */
98
   /** Register index should be offset by the integer in this reg. */
99
   src_reg *reladdr;
100
};
101
 
102
class dst_reg {
103
public:
104
   dst_reg(gl_register_file file, int writemask)
105
   {
106
      this->file = file;
107
      this->index = 0;
108
      this->writemask = writemask;
109
      this->cond_mask = COND_TR;
110
      this->reladdr = NULL;
111
   }
112
 
113
   dst_reg()
114
   {
115
      this->file = PROGRAM_UNDEFINED;
116
      this->index = 0;
117
      this->writemask = 0;
118
      this->cond_mask = COND_TR;
119
      this->reladdr = NULL;
120
   }
121
 
122
   explicit dst_reg(src_reg reg);
123
 
124
   gl_register_file file; /**< PROGRAM_* from Mesa */
125
   int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
126
   int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
127
   GLuint cond_mask:4;
128
   /** Register index should be offset by the integer in this reg. */
129
   src_reg *reladdr;
130
};
131
 
132
src_reg::src_reg(dst_reg reg)
133
{
134
   this->file = reg.file;
135
   this->index = reg.index;
136
   this->swizzle = SWIZZLE_XYZW;
137
   this->negate = 0;
138
   this->reladdr = reg.reladdr;
139
}
140
 
141
dst_reg::dst_reg(src_reg reg)
142
{
143
   this->file = reg.file;
144
   this->index = reg.index;
145
   this->writemask = WRITEMASK_XYZW;
146
   this->cond_mask = COND_TR;
147
   this->reladdr = reg.reladdr;
148
}
149
 
150
class ir_to_mesa_instruction : public exec_node {
151
public:
152
   /* Callers of this ralloc-based new need not call delete. It's
153
    * easier to just ralloc_free 'ctx' (or any of its ancestors). */
154
   static void* operator new(size_t size, void *ctx)
155
   {
156
      void *node;
157
 
158
      node = rzalloc_size(ctx, size);
159
      assert(node != NULL);
160
 
161
      return node;
162
   }
163
 
164
   enum prog_opcode op;
165
   dst_reg dst;
166
   src_reg src[3];
167
   /** Pointer to the ir source this tree came from for debugging */
168
   ir_instruction *ir;
169
   GLboolean cond_update;
170
   bool saturate;
171
   int sampler; /**< sampler index */
172
   int tex_target; /**< One of TEXTURE_*_INDEX */
173
   GLboolean tex_shadow;
174
};
175
 
176
class variable_storage : public exec_node {
177
public:
178
   variable_storage(ir_variable *var, gl_register_file file, int index)
179
      : file(file), index(index), var(var)
180
   {
181
      /* empty */
182
   }
183
 
184
   gl_register_file file;
185
   int index;
186
   ir_variable *var; /* variable that maps to this, if any */
187
};
188
 
189
class function_entry : public exec_node {
190
public:
191
   ir_function_signature *sig;
192
 
193
   /**
194
    * identifier of this function signature used by the program.
195
    *
196
    * At the point that Mesa instructions for function calls are
197
    * generated, we don't know the address of the first instruction of
198
    * the function body.  So we make the BranchTarget that is called a
199
    * small integer and rewrite them during set_branchtargets().
200
    */
201
   int sig_id;
202
 
203
   /**
204
    * Pointer to first instruction of the function body.
205
    *
206
    * Set during function body emits after main() is processed.
207
    */
208
   ir_to_mesa_instruction *bgn_inst;
209
 
210
   /**
211
    * Index of the first instruction of the function body in actual
212
    * Mesa IR.
213
    *
214
    * Set after convertion from ir_to_mesa_instruction to prog_instruction.
215
    */
216
   int inst;
217
 
218
   /** Storage for the return value. */
219
   src_reg return_reg;
220
};
221
 
222
class ir_to_mesa_visitor : public ir_visitor {
223
public:
224
   ir_to_mesa_visitor();
225
   ~ir_to_mesa_visitor();
226
 
227
   function_entry *current_function;
228
 
229
   struct gl_context *ctx;
230
   struct gl_program *prog;
231
   struct gl_shader_program *shader_program;
232
   struct gl_shader_compiler_options *options;
233
 
234
   int next_temp;
235
 
236
   variable_storage *find_variable_storage(ir_variable *var);
237
 
238
   src_reg get_temp(const glsl_type *type);
239
   void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
240
 
241
   src_reg src_reg_for_float(float val);
242
 
243
   /**
244
    * \name Visit methods
245
    *
246
    * As typical for the visitor pattern, there must be one \c visit method for
247
    * each concrete subclass of \c ir_instruction.  Virtual base classes within
248
    * the hierarchy should not have \c visit methods.
249
    */
250
   /*@{*/
251
   virtual void visit(ir_variable *);
252
   virtual void visit(ir_loop *);
253
   virtual void visit(ir_loop_jump *);
254
   virtual void visit(ir_function_signature *);
255
   virtual void visit(ir_function *);
256
   virtual void visit(ir_expression *);
257
   virtual void visit(ir_swizzle *);
258
   virtual void visit(ir_dereference_variable  *);
259
   virtual void visit(ir_dereference_array *);
260
   virtual void visit(ir_dereference_record *);
261
   virtual void visit(ir_assignment *);
262
   virtual void visit(ir_constant *);
263
   virtual void visit(ir_call *);
264
   virtual void visit(ir_return *);
265
   virtual void visit(ir_discard *);
266
   virtual void visit(ir_texture *);
267
   virtual void visit(ir_if *);
268
   /*@}*/
269
 
270
   src_reg result;
271
 
272
   /** List of variable_storage */
273
   exec_list variables;
274
 
275
   /** List of function_entry */
276
   exec_list function_signatures;
277
   int next_signature_id;
278
 
279
   /** List of ir_to_mesa_instruction */
280
   exec_list instructions;
281
 
282
   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
283
 
284
   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
285
			        dst_reg dst, src_reg src0);
286
 
287
   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
288
			        dst_reg dst, src_reg src0, src_reg src1);
289
 
290
   ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
291
			        dst_reg dst,
292
			        src_reg src0, src_reg src1, src_reg src2);
293
 
294
   /**
295
    * Emit the correct dot-product instruction for the type of arguments
296
    */
297
   ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
298
				    dst_reg dst,
299
				    src_reg src0,
300
				    src_reg src1,
301
				    unsigned elements);
302
 
303
   void emit_scalar(ir_instruction *ir, enum prog_opcode op,
304
		    dst_reg dst, src_reg src0);
305
 
306
   void emit_scalar(ir_instruction *ir, enum prog_opcode op,
307
		    dst_reg dst, src_reg src0, src_reg src1);
308
 
309
   void emit_scs(ir_instruction *ir, enum prog_opcode op,
310
		 dst_reg dst, const src_reg &src);
311
 
312
   bool try_emit_mad(ir_expression *ir,
313
			  int mul_operand);
314
   bool try_emit_mad_for_and_not(ir_expression *ir,
315
				 int mul_operand);
316
   bool try_emit_sat(ir_expression *ir);
317
 
318
   void emit_swz(ir_expression *ir);
319
 
320
   bool process_move_condition(ir_rvalue *ir);
321
 
322
   void copy_propagate(void);
323
 
324
   void *mem_ctx;
325
};
326
 
327
static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
328
 
329
static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
330
 
331
static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
332
 
333
static int
334
swizzle_for_size(int size)
335
{
336
   static const int size_swizzles[4] = {
337
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
338
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
339
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
340
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
341
   };
342
 
343
   assert((size >= 1) && (size <= 4));
344
   return size_swizzles[size - 1];
345
}
346
 
347
ir_to_mesa_instruction *
348
ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
349
			 dst_reg dst,
350
			 src_reg src0, src_reg src1, src_reg src2)
351
{
352
   ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
353
   int num_reladdr = 0;
354
 
355
   /* If we have to do relative addressing, we want to load the ARL
356
    * reg directly for one of the regs, and preload the other reladdr
357
    * sources into temps.
358
    */
359
   num_reladdr += dst.reladdr != NULL;
360
   num_reladdr += src0.reladdr != NULL;
361
   num_reladdr += src1.reladdr != NULL;
362
   num_reladdr += src2.reladdr != NULL;
363
 
364
   reladdr_to_temp(ir, &src2, &num_reladdr);
365
   reladdr_to_temp(ir, &src1, &num_reladdr);
366
   reladdr_to_temp(ir, &src0, &num_reladdr);
367
 
368
   if (dst.reladdr) {
369
      emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
370
      num_reladdr--;
371
   }
372
   assert(num_reladdr == 0);
373
 
374
   inst->op = op;
375
   inst->dst = dst;
376
   inst->src[0] = src0;
377
   inst->src[1] = src1;
378
   inst->src[2] = src2;
379
   inst->ir = ir;
380
 
381
   this->instructions.push_tail(inst);
382
 
383
   return inst;
384
}
385
 
386
 
387
ir_to_mesa_instruction *
388
ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
389
			 dst_reg dst, src_reg src0, src_reg src1)
390
{
391
   return emit(ir, op, dst, src0, src1, undef_src);
392
}
393
 
394
ir_to_mesa_instruction *
395
ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396
			 dst_reg dst, src_reg src0)
397
{
398
   assert(dst.writemask != 0);
399
   return emit(ir, op, dst, src0, undef_src, undef_src);
400
}
401
 
402
ir_to_mesa_instruction *
403
ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
404
{
405
   return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
406
}
407
 
408
ir_to_mesa_instruction *
409
ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
410
			    dst_reg dst, src_reg src0, src_reg src1,
411
			    unsigned elements)
412
{
413
   static const gl_inst_opcode dot_opcodes[] = {
414
      OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
415
   };
416
 
417
   return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
418
}
419
 
420
/**
421
 * Emits Mesa scalar opcodes to produce unique answers across channels.
422
 *
423
 * Some Mesa opcodes are scalar-only, like ARB_fp/vp.  The src X
424
 * channel determines the result across all channels.  So to do a vec4
425
 * of this operation, we want to emit a scalar per source channel used
426
 * to produce dest channels.
427
 */
428
void
429
ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
430
			        dst_reg dst,
431
				src_reg orig_src0, src_reg orig_src1)
432
{
433
   int i, j;
434
   int done_mask = ~dst.writemask;
435
 
436
   /* Mesa RCP is a scalar operation splatting results to all channels,
437
    * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
438
    * dst channels.
439
    */
440
   for (i = 0; i < 4; i++) {
441
      GLuint this_mask = (1 << i);
442
      ir_to_mesa_instruction *inst;
443
      src_reg src0 = orig_src0;
444
      src_reg src1 = orig_src1;
445
 
446
      if (done_mask & this_mask)
447
	 continue;
448
 
449
      GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
450
      GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
451
      for (j = i + 1; j < 4; j++) {
452
	 /* If there is another enabled component in the destination that is
453
	  * derived from the same inputs, generate its value on this pass as
454
	  * well.
455
	  */
456
	 if (!(done_mask & (1 << j)) &&
457
	     GET_SWZ(src0.swizzle, j) == src0_swiz &&
458
	     GET_SWZ(src1.swizzle, j) == src1_swiz) {
459
	    this_mask |= (1 << j);
460
	 }
461
      }
462
      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
463
				   src0_swiz, src0_swiz);
464
      src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
465
				  src1_swiz, src1_swiz);
466
 
467
      inst = emit(ir, op, dst, src0, src1);
468
      inst->dst.writemask = this_mask;
469
      done_mask |= this_mask;
470
   }
471
}
472
 
473
void
474
ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
475
			        dst_reg dst, src_reg src0)
476
{
477
   src_reg undef = undef_src;
478
 
479
   undef.swizzle = SWIZZLE_XXXX;
480
 
481
   emit_scalar(ir, op, dst, src0, undef);
482
}
483
 
484
/**
485
 * Emit an OPCODE_SCS instruction
486
 *
487
 * The \c SCS opcode functions a bit differently than the other Mesa (or
488
 * ARB_fragment_program) opcodes.  Instead of splatting its result across all
489
 * four components of the destination, it writes one value to the \c x
490
 * component and another value to the \c y component.
491
 *
492
 * \param ir        IR instruction being processed
493
 * \param op        Either \c OPCODE_SIN or \c OPCODE_COS depending on which
494
 *                  value is desired.
495
 * \param dst       Destination register
496
 * \param src       Source register
497
 */
498
void
499
ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
500
			     dst_reg dst,
501
			     const src_reg &src)
502
{
503
   /* Vertex programs cannot use the SCS opcode.
504
    */
505
   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
506
      emit_scalar(ir, op, dst, src);
507
      return;
508
   }
509
 
510
   const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
511
   const unsigned scs_mask = (1U << component);
512
   int done_mask = ~dst.writemask;
513
   src_reg tmp;
514
 
515
   assert(op == OPCODE_SIN || op == OPCODE_COS);
516
 
517
   /* If there are compnents in the destination that differ from the component
518
    * that will be written by the SCS instrution, we'll need a temporary.
519
    */
520
   if (scs_mask != unsigned(dst.writemask)) {
521
      tmp = get_temp(glsl_type::vec4_type);
522
   }
523
 
524
   for (unsigned i = 0; i < 4; i++) {
525
      unsigned this_mask = (1U << i);
526
      src_reg src0 = src;
527
 
528
      if ((done_mask & this_mask) != 0)
529
	 continue;
530
 
531
      /* The source swizzle specified which component of the source generates
532
       * sine / cosine for the current component in the destination.  The SCS
533
       * instruction requires that this value be swizzle to the X component.
534
       * Replace the current swizzle with a swizzle that puts the source in
535
       * the X component.
536
       */
537
      unsigned src0_swiz = GET_SWZ(src.swizzle, i);
538
 
539
      src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
540
				   src0_swiz, src0_swiz);
541
      for (unsigned j = i + 1; j < 4; j++) {
542
	 /* If there is another enabled component in the destination that is
543
	  * derived from the same inputs, generate its value on this pass as
544
	  * well.
545
	  */
546
	 if (!(done_mask & (1 << j)) &&
547
	     GET_SWZ(src0.swizzle, j) == src0_swiz) {
548
	    this_mask |= (1 << j);
549
	 }
550
      }
551
 
552
      if (this_mask != scs_mask) {
553
	 ir_to_mesa_instruction *inst;
554
	 dst_reg tmp_dst = dst_reg(tmp);
555
 
556
	 /* Emit the SCS instruction.
557
	  */
558
	 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
559
	 inst->dst.writemask = scs_mask;
560
 
561
	 /* Move the result of the SCS instruction to the desired location in
562
	  * the destination.
563
	  */
564
	 tmp.swizzle = MAKE_SWIZZLE4(component, component,
565
				     component, component);
566
	 inst = emit(ir, OPCODE_SCS, dst, tmp);
567
	 inst->dst.writemask = this_mask;
568
      } else {
569
	 /* Emit the SCS instruction to write directly to the destination.
570
	  */
571
	 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
572
	 inst->dst.writemask = scs_mask;
573
      }
574
 
575
      done_mask |= this_mask;
576
   }
577
}
578
 
579
src_reg
580
ir_to_mesa_visitor::src_reg_for_float(float val)
581
{
582
   src_reg src(PROGRAM_CONSTANT, -1, NULL);
583
 
584
   src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
585
					  (const gl_constant_value *)&val, 1, &src.swizzle);
586
 
587
   return src;
588
}
589
 
590
static int
591
type_size(const struct glsl_type *type)
592
{
593
   unsigned int i;
594
   int size;
595
 
596
   switch (type->base_type) {
597
   case GLSL_TYPE_UINT:
598
   case GLSL_TYPE_INT:
599
   case GLSL_TYPE_FLOAT:
600
   case GLSL_TYPE_BOOL:
601
      if (type->is_matrix()) {
602
	 return type->matrix_columns;
603
      } else {
604
	 /* Regardless of size of vector, it gets a vec4. This is bad
605
	  * packing for things like floats, but otherwise arrays become a
606
	  * mess.  Hopefully a later pass over the code can pack scalars
607
	  * down if appropriate.
608
	  */
609
	 return 1;
610
      }
611
   case GLSL_TYPE_ARRAY:
612
      assert(type->length > 0);
613
      return type_size(type->fields.array) * type->length;
614
   case GLSL_TYPE_STRUCT:
615
      size = 0;
616
      for (i = 0; i < type->length; i++) {
617
	 size += type_size(type->fields.structure[i].type);
618
      }
619
      return size;
620
   case GLSL_TYPE_SAMPLER:
621
      /* Samplers take up one slot in UNIFORMS[], but they're baked in
622
       * at link time.
623
       */
624
      return 1;
625
   case GLSL_TYPE_VOID:
626
   case GLSL_TYPE_ERROR:
627
   case GLSL_TYPE_INTERFACE:
628
      assert(!"Invalid type in type_size");
629
      break;
630
   }
631
 
632
   return 0;
633
}
634
 
635
/**
636
 * In the initial pass of codegen, we assign temporary numbers to
637
 * intermediate results.  (not SSA -- variable assignments will reuse
638
 * storage).  Actual register allocation for the Mesa VM occurs in a
639
 * pass over the Mesa IR later.
640
 */
641
src_reg
642
ir_to_mesa_visitor::get_temp(const glsl_type *type)
643
{
644
   src_reg src;
645
 
646
   src.file = PROGRAM_TEMPORARY;
647
   src.index = next_temp;
648
   src.reladdr = NULL;
649
   next_temp += type_size(type);
650
 
651
   if (type->is_array() || type->is_record()) {
652
      src.swizzle = SWIZZLE_NOOP;
653
   } else {
654
      src.swizzle = swizzle_for_size(type->vector_elements);
655
   }
656
   src.negate = 0;
657
 
658
   return src;
659
}
660
 
661
variable_storage *
662
ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
663
{
664
 
665
   variable_storage *entry;
666
 
667
   foreach_iter(exec_list_iterator, iter, this->variables) {
668
      entry = (variable_storage *)iter.get();
669
 
670
      if (entry->var == var)
671
	 return entry;
672
   }
673
 
674
   return NULL;
675
}
676
 
677
void
678
ir_to_mesa_visitor::visit(ir_variable *ir)
679
{
680
   if (strcmp(ir->name, "gl_FragCoord") == 0) {
681
      struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
682
 
683
      fp->OriginUpperLeft = ir->origin_upper_left;
684
      fp->PixelCenterInteger = ir->pixel_center_integer;
685
   }
686
 
687
   if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
688
      unsigned int i;
689
      const ir_state_slot *const slots = ir->state_slots;
690
      assert(ir->state_slots != NULL);
691
 
692
      /* Check if this statevar's setup in the STATE file exactly
693
       * matches how we'll want to reference it as a
694
       * struct/array/whatever.  If not, then we need to move it into
695
       * temporary storage and hope that it'll get copy-propagated
696
       * out.
697
       */
698
      for (i = 0; i < ir->num_state_slots; i++) {
699
	 if (slots[i].swizzle != SWIZZLE_XYZW) {
700
	    break;
701
	 }
702
      }
703
 
704
      variable_storage *storage;
705
      dst_reg dst;
706
      if (i == ir->num_state_slots) {
707
	 /* We'll set the index later. */
708
	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
709
	 this->variables.push_tail(storage);
710
 
711
	 dst = undef_dst;
712
      } else {
713
	 /* The variable_storage constructor allocates slots based on the size
714
	  * of the type.  However, this had better match the number of state
715
	  * elements that we're going to copy into the new temporary.
716
	  */
717
	 assert((int) ir->num_state_slots == type_size(ir->type));
718
 
719
	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
720
						 this->next_temp);
721
	 this->variables.push_tail(storage);
722
	 this->next_temp += type_size(ir->type);
723
 
724
	 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
725
      }
726
 
727
 
728
      for (unsigned int i = 0; i < ir->num_state_slots; i++) {
729
	 int index = _mesa_add_state_reference(this->prog->Parameters,
730
					       (gl_state_index *)slots[i].tokens);
731
 
732
	 if (storage->file == PROGRAM_STATE_VAR) {
733
	    if (storage->index == -1) {
734
	       storage->index = index;
735
	    } else {
736
	       assert(index == storage->index + (int)i);
737
	    }
738
	 } else {
739
	    src_reg src(PROGRAM_STATE_VAR, index, NULL);
740
	    src.swizzle = slots[i].swizzle;
741
	    emit(ir, OPCODE_MOV, dst, src);
742
	    /* even a float takes up a whole vec4 reg in a struct/array. */
743
	    dst.index++;
744
	 }
745
      }
746
 
747
      if (storage->file == PROGRAM_TEMPORARY &&
748
	  dst.index != storage->index + (int) ir->num_state_slots) {
749
	 linker_error(this->shader_program,
750
		      "failed to load builtin uniform `%s' "
751
		      "(%d/%d regs loaded)\n",
752
		      ir->name, dst.index - storage->index,
753
		      type_size(ir->type));
754
      }
755
   }
756
}
757
 
758
void
759
ir_to_mesa_visitor::visit(ir_loop *ir)
760
{
761
   ir_dereference_variable *counter = NULL;
762
 
763
   if (ir->counter != NULL)
764
      counter = new(mem_ctx) ir_dereference_variable(ir->counter);
765
 
766
   if (ir->from != NULL) {
767
      assert(ir->counter != NULL);
768
 
769
      ir_assignment *a =
770
	new(mem_ctx) ir_assignment(counter, ir->from, NULL);
771
 
772
      a->accept(this);
773
   }
774
 
775
   emit(NULL, OPCODE_BGNLOOP);
776
 
777
   if (ir->to) {
778
      ir_expression *e =
779
	 new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
780
					  counter, ir->to);
781
      ir_if *if_stmt =  new(mem_ctx) ir_if(e);
782
 
783
      ir_loop_jump *brk =
784
	new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
785
 
786
      if_stmt->then_instructions.push_tail(brk);
787
 
788
      if_stmt->accept(this);
789
   }
790
 
791
   visit_exec_list(&ir->body_instructions, this);
792
 
793
   if (ir->increment) {
794
      ir_expression *e =
795
	 new(mem_ctx) ir_expression(ir_binop_add, counter->type,
796
					  counter, ir->increment);
797
 
798
      ir_assignment *a =
799
	new(mem_ctx) ir_assignment(counter, e, NULL);
800
 
801
      a->accept(this);
802
   }
803
 
804
   emit(NULL, OPCODE_ENDLOOP);
805
}
806
 
807
void
808
ir_to_mesa_visitor::visit(ir_loop_jump *ir)
809
{
810
   switch (ir->mode) {
811
   case ir_loop_jump::jump_break:
812
      emit(NULL, OPCODE_BRK);
813
      break;
814
   case ir_loop_jump::jump_continue:
815
      emit(NULL, OPCODE_CONT);
816
      break;
817
   }
818
}
819
 
820
 
821
void
822
ir_to_mesa_visitor::visit(ir_function_signature *ir)
823
{
824
   assert(0);
825
   (void)ir;
826
}
827
 
828
void
829
ir_to_mesa_visitor::visit(ir_function *ir)
830
{
831
   /* Ignore function bodies other than main() -- we shouldn't see calls to
832
    * them since they should all be inlined before we get to ir_to_mesa.
833
    */
834
   if (strcmp(ir->name, "main") == 0) {
835
      const ir_function_signature *sig;
836
      exec_list empty;
837
 
838
      sig = ir->matching_signature(&empty);
839
 
840
      assert(sig);
841
 
842
      foreach_iter(exec_list_iterator, iter, sig->body) {
843
	 ir_instruction *ir = (ir_instruction *)iter.get();
844
 
845
	 ir->accept(this);
846
      }
847
   }
848
}
849
 
850
bool
851
ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
852
{
853
   int nonmul_operand = 1 - mul_operand;
854
   src_reg a, b, c;
855
 
856
   ir_expression *expr = ir->operands[mul_operand]->as_expression();
857
   if (!expr || expr->operation != ir_binop_mul)
858
      return false;
859
 
860
   expr->operands[0]->accept(this);
861
   a = this->result;
862
   expr->operands[1]->accept(this);
863
   b = this->result;
864
   ir->operands[nonmul_operand]->accept(this);
865
   c = this->result;
866
 
867
   this->result = get_temp(ir->type);
868
   emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
869
 
870
   return true;
871
}
872
 
873
/**
874
 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
875
 *
876
 * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
877
 * implemented using multiplication, and logical-or is implemented using
878
 * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
879
 * As result, the logical expression (a & !b) can be rewritten as:
880
 *
881
 *     - a * !b
882
 *     - a * (1 - b)
883
 *     - (a * 1) - (a * b)
884
 *     - a + -(a * b)
885
 *     - a + (a * -b)
886
 *
887
 * This final expression can be implemented as a single MAD(a, -b, a)
888
 * instruction.
889
 */
890
bool
891
ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
892
{
893
   const int other_operand = 1 - try_operand;
894
   src_reg a, b;
895
 
896
   ir_expression *expr = ir->operands[try_operand]->as_expression();
897
   if (!expr || expr->operation != ir_unop_logic_not)
898
      return false;
899
 
900
   ir->operands[other_operand]->accept(this);
901
   a = this->result;
902
   expr->operands[0]->accept(this);
903
   b = this->result;
904
 
905
   b.negate = ~b.negate;
906
 
907
   this->result = get_temp(ir->type);
908
   emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
909
 
910
   return true;
911
}
912
 
913
bool
914
ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
915
{
916
   /* Saturates were only introduced to vertex programs in
917
    * NV_vertex_program3, so don't give them to drivers in the VP.
918
    */
919
   if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
920
      return false;
921
 
922
   ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
923
   if (!sat_src)
924
      return false;
925
 
926
   sat_src->accept(this);
927
   src_reg src = this->result;
928
 
929
   /* If we generated an expression instruction into a temporary in
930
    * processing the saturate's operand, apply the saturate to that
931
    * instruction.  Otherwise, generate a MOV to do the saturate.
932
    *
933
    * Note that we have to be careful to only do this optimization if
934
    * the instruction in question was what generated src->result.  For
935
    * example, ir_dereference_array might generate a MUL instruction
936
    * to create the reladdr, and return us a src reg using that
937
    * reladdr.  That MUL result is not the value we're trying to
938
    * saturate.
939
    */
940
   ir_expression *sat_src_expr = sat_src->as_expression();
941
   ir_to_mesa_instruction *new_inst;
942
   new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
943
   if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
944
			sat_src_expr->operation == ir_binop_add ||
945
			sat_src_expr->operation == ir_binop_dot)) {
946
      new_inst->saturate = true;
947
   } else {
948
      this->result = get_temp(ir->type);
949
      ir_to_mesa_instruction *inst;
950
      inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
951
      inst->saturate = true;
952
   }
953
 
954
   return true;
955
}
956
 
957
void
958
ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
959
				    src_reg *reg, int *num_reladdr)
960
{
961
   if (!reg->reladdr)
962
      return;
963
 
964
   emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
965
 
966
   if (*num_reladdr != 1) {
967
      src_reg temp = get_temp(glsl_type::vec4_type);
968
 
969
      emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
970
      *reg = temp;
971
   }
972
 
973
   (*num_reladdr)--;
974
}
975
 
976
void
977
ir_to_mesa_visitor::emit_swz(ir_expression *ir)
978
{
979
   /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
980
    * This means that each of the operands is either an immediate value of -1,
981
    * 0, or 1, or is a component from one source register (possibly with
982
    * negation).
983
    */
984
   uint8_t components[4] = { 0 };
985
   bool negate[4] = { false };
986
   ir_variable *var = NULL;
987
 
988
   for (unsigned i = 0; i < ir->type->vector_elements; i++) {
989
      ir_rvalue *op = ir->operands[i];
990
 
991
      assert(op->type->is_scalar());
992
 
993
      while (op != NULL) {
994
	 switch (op->ir_type) {
995
	 case ir_type_constant: {
996
 
997
	    assert(op->type->is_scalar());
998
 
999
	    const ir_constant *const c = op->as_constant();
1000
	    if (c->is_one()) {
1001
	       components[i] = SWIZZLE_ONE;
1002
	    } else if (c->is_zero()) {
1003
	       components[i] = SWIZZLE_ZERO;
1004
	    } else if (c->is_negative_one()) {
1005
	       components[i] = SWIZZLE_ONE;
1006
	       negate[i] = true;
1007
	    } else {
1008
	       assert(!"SWZ constant must be 0.0 or 1.0.");
1009
	    }
1010
 
1011
	    op = NULL;
1012
	    break;
1013
	 }
1014
 
1015
	 case ir_type_dereference_variable: {
1016
	    ir_dereference_variable *const deref =
1017
	       (ir_dereference_variable *) op;
1018
 
1019
	    assert((var == NULL) || (deref->var == var));
1020
	    components[i] = SWIZZLE_X;
1021
	    var = deref->var;
1022
	    op = NULL;
1023
	    break;
1024
	 }
1025
 
1026
	 case ir_type_expression: {
1027
	    ir_expression *const expr = (ir_expression *) op;
1028
 
1029
	    assert(expr->operation == ir_unop_neg);
1030
	    negate[i] = true;
1031
 
1032
	    op = expr->operands[0];
1033
	    break;
1034
	 }
1035
 
1036
	 case ir_type_swizzle: {
1037
	    ir_swizzle *const swiz = (ir_swizzle *) op;
1038
 
1039
	    components[i] = swiz->mask.x;
1040
	    op = swiz->val;
1041
	    break;
1042
	 }
1043
 
1044
	 default:
1045
	    assert(!"Should not get here.");
1046
	    return;
1047
	 }
1048
      }
1049
   }
1050
 
1051
   assert(var != NULL);
1052
 
1053
   ir_dereference_variable *const deref =
1054
      new(mem_ctx) ir_dereference_variable(var);
1055
 
1056
   this->result.file = PROGRAM_UNDEFINED;
1057
   deref->accept(this);
1058
   if (this->result.file == PROGRAM_UNDEFINED) {
1059
      printf("Failed to get tree for expression operand:\n");
1060
      deref->print();
1061
      printf("\n");
1062
      exit(1);
1063
   }
1064
 
1065
   src_reg src;
1066
 
1067
   src = this->result;
1068
   src.swizzle = MAKE_SWIZZLE4(components[0],
1069
			       components[1],
1070
			       components[2],
1071
			       components[3]);
1072
   src.negate = ((unsigned(negate[0]) << 0)
1073
		 | (unsigned(negate[1]) << 1)
1074
		 | (unsigned(negate[2]) << 2)
1075
		 | (unsigned(negate[3]) << 3));
1076
 
1077
   /* Storage for our result.  Ideally for an assignment we'd be using the
1078
    * actual storage for the result here, instead.
1079
    */
1080
   const src_reg result_src = get_temp(ir->type);
1081
   dst_reg result_dst = dst_reg(result_src);
1082
 
1083
   /* Limit writes to the channels that will be used by result_src later.
1084
    * This does limit this temp's use as a temporary for multi-instruction
1085
    * sequences.
1086
    */
1087
   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1088
 
1089
   emit(ir, OPCODE_SWZ, result_dst, src);
1090
   this->result = result_src;
1091
}
1092
 
1093
void
1094
ir_to_mesa_visitor::visit(ir_expression *ir)
1095
{
1096
   unsigned int operand;
1097
   src_reg op[Elements(ir->operands)];
1098
   src_reg result_src;
1099
   dst_reg result_dst;
1100
 
1101
   /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1102
    */
1103
   if (ir->operation == ir_binop_add) {
1104
      if (try_emit_mad(ir, 1))
1105
	 return;
1106
      if (try_emit_mad(ir, 0))
1107
	 return;
1108
   }
1109
 
1110
   /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1111
    */
1112
   if (ir->operation == ir_binop_logic_and) {
1113
      if (try_emit_mad_for_and_not(ir, 1))
1114
	 return;
1115
      if (try_emit_mad_for_and_not(ir, 0))
1116
	 return;
1117
   }
1118
 
1119
   if (try_emit_sat(ir))
1120
      return;
1121
 
1122
   if (ir->operation == ir_quadop_vector) {
1123
      this->emit_swz(ir);
1124
      return;
1125
   }
1126
 
1127
   for (operand = 0; operand < ir->get_num_operands(); operand++) {
1128
      this->result.file = PROGRAM_UNDEFINED;
1129
      ir->operands[operand]->accept(this);
1130
      if (this->result.file == PROGRAM_UNDEFINED) {
1131
	 printf("Failed to get tree for expression operand:\n");
1132
         ir->operands[operand]->print();
1133
         printf("\n");
1134
	 exit(1);
1135
      }
1136
      op[operand] = this->result;
1137
 
1138
      /* Matrix expression operands should have been broken down to vector
1139
       * operations already.
1140
       */
1141
      assert(!ir->operands[operand]->type->is_matrix());
1142
   }
1143
 
1144
   int vector_elements = ir->operands[0]->type->vector_elements;
1145
   if (ir->operands[1]) {
1146
      vector_elements = MAX2(vector_elements,
1147
			     ir->operands[1]->type->vector_elements);
1148
   }
1149
 
1150
   this->result.file = PROGRAM_UNDEFINED;
1151
 
1152
   /* Storage for our result.  Ideally for an assignment we'd be using
1153
    * the actual storage for the result here, instead.
1154
    */
1155
   result_src = get_temp(ir->type);
1156
   /* convenience for the emit functions below. */
1157
   result_dst = dst_reg(result_src);
1158
   /* Limit writes to the channels that will be used by result_src later.
1159
    * This does limit this temp's use as a temporary for multi-instruction
1160
    * sequences.
1161
    */
1162
   result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1163
 
1164
   switch (ir->operation) {
1165
   case ir_unop_logic_not:
1166
      /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
1167
       * older GPUs implement SEQ using multiple instructions (i915 uses two
1168
       * SGE instructions and a MUL instruction).  Since our logic values are
1169
       * 0.0 and 1.0, 1-x also implements !x.
1170
       */
1171
      op[0].negate = ~op[0].negate;
1172
      emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1173
      break;
1174
   case ir_unop_neg:
1175
      op[0].negate = ~op[0].negate;
1176
      result_src = op[0];
1177
      break;
1178
   case ir_unop_abs:
1179
      emit(ir, OPCODE_ABS, result_dst, op[0]);
1180
      break;
1181
   case ir_unop_sign:
1182
      emit(ir, OPCODE_SSG, result_dst, op[0]);
1183
      break;
1184
   case ir_unop_rcp:
1185
      emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1186
      break;
1187
 
1188
   case ir_unop_exp2:
1189
      emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1190
      break;
1191
   case ir_unop_exp:
1192
   case ir_unop_log:
1193
      assert(!"not reached: should be handled by ir_explog_to_explog2");
1194
      break;
1195
   case ir_unop_log2:
1196
      emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1197
      break;
1198
   case ir_unop_sin:
1199
      emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1200
      break;
1201
   case ir_unop_cos:
1202
      emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1203
      break;
1204
   case ir_unop_sin_reduced:
1205
      emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1206
      break;
1207
   case ir_unop_cos_reduced:
1208
      emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1209
      break;
1210
 
1211
   case ir_unop_dFdx:
1212
      emit(ir, OPCODE_DDX, result_dst, op[0]);
1213
      break;
1214
   case ir_unop_dFdy:
1215
      emit(ir, OPCODE_DDY, result_dst, op[0]);
1216
      break;
1217
 
1218
   case ir_unop_noise: {
1219
      const enum prog_opcode opcode =
1220
	 prog_opcode(OPCODE_NOISE1
1221
		     + (ir->operands[0]->type->vector_elements) - 1);
1222
      assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1223
 
1224
      emit(ir, opcode, result_dst, op[0]);
1225
      break;
1226
   }
1227
 
1228
   case ir_binop_add:
1229
      emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1230
      break;
1231
   case ir_binop_sub:
1232
      emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1233
      break;
1234
 
1235
   case ir_binop_mul:
1236
      emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1237
      break;
1238
   case ir_binop_div:
1239
      assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1240
      break;
1241
   case ir_binop_mod:
1242
      /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1243
      assert(ir->type->is_integer());
1244
      emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1245
      break;
1246
 
1247
   case ir_binop_less:
1248
      emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1249
      break;
1250
   case ir_binop_greater:
1251
      emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1252
      break;
1253
   case ir_binop_lequal:
1254
      emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1255
      break;
1256
   case ir_binop_gequal:
1257
      emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1258
      break;
1259
   case ir_binop_equal:
1260
      emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1261
      break;
1262
   case ir_binop_nequal:
1263
      emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1264
      break;
1265
   case ir_binop_all_equal:
1266
      /* "==" operator producing a scalar boolean. */
1267
      if (ir->operands[0]->type->is_vector() ||
1268
	  ir->operands[1]->type->is_vector()) {
1269
	 src_reg temp = get_temp(glsl_type::vec4_type);
1270
	 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1271
 
1272
	 /* After the dot-product, the value will be an integer on the
1273
	  * range [0,4].  Zero becomes 1.0, and positive values become zero.
1274
	  */
1275
	 emit_dp(ir, result_dst, temp, temp, vector_elements);
1276
 
1277
	 /* Negating the result of the dot-product gives values on the range
1278
	  * [-4, 0].  Zero becomes 1.0, and negative values become zero.  This
1279
	  * achieved using SGE.
1280
	  */
1281
	 src_reg sge_src = result_src;
1282
	 sge_src.negate = ~sge_src.negate;
1283
	 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1284
      } else {
1285
	 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1286
      }
1287
      break;
1288
   case ir_binop_any_nequal:
1289
      /* "!=" operator producing a scalar boolean. */
1290
      if (ir->operands[0]->type->is_vector() ||
1291
	  ir->operands[1]->type->is_vector()) {
1292
	 src_reg temp = get_temp(glsl_type::vec4_type);
1293
	 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1294
 
1295
	 /* After the dot-product, the value will be an integer on the
1296
	  * range [0,4].  Zero stays zero, and positive values become 1.0.
1297
	  */
1298
	 ir_to_mesa_instruction *const dp =
1299
	    emit_dp(ir, result_dst, temp, temp, vector_elements);
1300
	 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1301
	    /* The clamping to [0,1] can be done for free in the fragment
1302
	     * shader with a saturate.
1303
	     */
1304
	    dp->saturate = true;
1305
	 } else {
1306
	    /* Negating the result of the dot-product gives values on the range
1307
	     * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1308
	     * achieved using SLT.
1309
	     */
1310
	    src_reg slt_src = result_src;
1311
	    slt_src.negate = ~slt_src.negate;
1312
	    emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1313
	 }
1314
      } else {
1315
	 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1316
      }
1317
      break;
1318
 
1319
   case ir_unop_any: {
1320
      assert(ir->operands[0]->type->is_vector());
1321
 
1322
      /* After the dot-product, the value will be an integer on the
1323
       * range [0,4].  Zero stays zero, and positive values become 1.0.
1324
       */
1325
      ir_to_mesa_instruction *const dp =
1326
	 emit_dp(ir, result_dst, op[0], op[0],
1327
		 ir->operands[0]->type->vector_elements);
1328
      if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1329
	 /* The clamping to [0,1] can be done for free in the fragment
1330
	  * shader with a saturate.
1331
	  */
1332
	 dp->saturate = true;
1333
      } else {
1334
	 /* Negating the result of the dot-product gives values on the range
1335
	  * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1336
	  * is achieved using SLT.
1337
	  */
1338
	 src_reg slt_src = result_src;
1339
	 slt_src.negate = ~slt_src.negate;
1340
	 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1341
      }
1342
      break;
1343
   }
1344
 
1345
   case ir_binop_logic_xor:
1346
      emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1347
      break;
1348
 
1349
   case ir_binop_logic_or: {
1350
      /* After the addition, the value will be an integer on the
1351
       * range [0,2].  Zero stays zero, and positive values become 1.0.
1352
       */
1353
      ir_to_mesa_instruction *add =
1354
	 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1355
      if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1356
	 /* The clamping to [0,1] can be done for free in the fragment
1357
	  * shader with a saturate.
1358
	  */
1359
	 add->saturate = true;
1360
      } else {
1361
	 /* Negating the result of the addition gives values on the range
1362
	  * [-2, 0].  Zero stays zero, and negative values become 1.0.  This
1363
	  * is achieved using SLT.
1364
	  */
1365
	 src_reg slt_src = result_src;
1366
	 slt_src.negate = ~slt_src.negate;
1367
	 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1368
      }
1369
      break;
1370
   }
1371
 
1372
   case ir_binop_logic_and:
1373
      /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1374
      emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1375
      break;
1376
 
1377
   case ir_binop_dot:
1378
      assert(ir->operands[0]->type->is_vector());
1379
      assert(ir->operands[0]->type == ir->operands[1]->type);
1380
      emit_dp(ir, result_dst, op[0], op[1],
1381
	      ir->operands[0]->type->vector_elements);
1382
      break;
1383
 
1384
   case ir_unop_sqrt:
1385
      /* sqrt(x) = x * rsq(x). */
1386
      emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1387
      emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1388
      /* For incoming channels <= 0, set the result to 0. */
1389
      op[0].negate = ~op[0].negate;
1390
      emit(ir, OPCODE_CMP, result_dst,
1391
			  op[0], result_src, src_reg_for_float(0.0));
1392
      break;
1393
   case ir_unop_rsq:
1394
      emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1395
      break;
1396
   case ir_unop_i2f:
1397
   case ir_unop_u2f:
1398
   case ir_unop_b2f:
1399
   case ir_unop_b2i:
1400
   case ir_unop_i2u:
1401
   case ir_unop_u2i:
1402
      /* Mesa IR lacks types, ints are stored as truncated floats. */
1403
      result_src = op[0];
1404
      break;
1405
   case ir_unop_f2i:
1406
   case ir_unop_f2u:
1407
      emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1408
      break;
1409
   case ir_unop_f2b:
1410
   case ir_unop_i2b:
1411
      emit(ir, OPCODE_SNE, result_dst,
1412
			  op[0], src_reg_for_float(0.0));
1413
      break;
1414
   case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1415
   case ir_unop_bitcast_f2u:
1416
   case ir_unop_bitcast_i2f:
1417
   case ir_unop_bitcast_u2f:
1418
      break;
1419
   case ir_unop_trunc:
1420
      emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1421
      break;
1422
   case ir_unop_ceil:
1423
      op[0].negate = ~op[0].negate;
1424
      emit(ir, OPCODE_FLR, result_dst, op[0]);
1425
      result_src.negate = ~result_src.negate;
1426
      break;
1427
   case ir_unop_floor:
1428
      emit(ir, OPCODE_FLR, result_dst, op[0]);
1429
      break;
1430
   case ir_unop_fract:
1431
      emit(ir, OPCODE_FRC, result_dst, op[0]);
1432
      break;
1433
   case ir_unop_pack_snorm_2x16:
1434
   case ir_unop_pack_snorm_4x8:
1435
   case ir_unop_pack_unorm_2x16:
1436
   case ir_unop_pack_unorm_4x8:
1437
   case ir_unop_pack_half_2x16:
1438
   case ir_unop_unpack_snorm_2x16:
1439
   case ir_unop_unpack_snorm_4x8:
1440
   case ir_unop_unpack_unorm_2x16:
1441
   case ir_unop_unpack_unorm_4x8:
1442
   case ir_unop_unpack_half_2x16:
1443
   case ir_unop_unpack_half_2x16_split_x:
1444
   case ir_unop_unpack_half_2x16_split_y:
1445
   case ir_binop_pack_half_2x16_split:
1446
   case ir_unop_bitfield_reverse:
1447
   case ir_unop_bit_count:
1448
   case ir_unop_find_msb:
1449
   case ir_unop_find_lsb:
1450
      assert(!"not supported");
1451
      break;
1452
   case ir_binop_min:
1453
      emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1454
      break;
1455
   case ir_binop_max:
1456
      emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1457
      break;
1458
   case ir_binop_pow:
1459
      emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1460
      break;
1461
 
1462
      /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1463
       * hardware backends have no way to avoid Mesa IR generation
1464
       * even if they don't use it, we need to emit "something" and
1465
       * continue.
1466
       */
1467
   case ir_binop_lshift:
1468
   case ir_binop_rshift:
1469
   case ir_binop_bit_and:
1470
   case ir_binop_bit_xor:
1471
   case ir_binop_bit_or:
1472
      emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1473
      break;
1474
 
1475
   case ir_unop_bit_not:
1476
   case ir_unop_round_even:
1477
      emit(ir, OPCODE_MOV, result_dst, op[0]);
1478
      break;
1479
 
1480
   case ir_binop_ubo_load:
1481
      assert(!"not supported");
1482
      break;
1483
 
1484
   case ir_triop_lrp:
1485
      /* ir_triop_lrp operands are (x, y, a) while
1486
       * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1487
       */
1488
      emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1489
      break;
1490
 
1491
   case ir_binop_vector_extract:
1492
   case ir_binop_bfm:
1493
   case ir_triop_bfi:
1494
   case ir_triop_bitfield_extract:
1495
   case ir_triop_vector_insert:
1496
   case ir_quadop_bitfield_insert:
1497
      assert(!"not supported");
1498
      break;
1499
 
1500
   case ir_quadop_vector:
1501
      /* This operation should have already been handled.
1502
       */
1503
      assert(!"Should not get here.");
1504
      break;
1505
   }
1506
 
1507
   this->result = result_src;
1508
}
1509
 
1510
 
1511
void
1512
ir_to_mesa_visitor::visit(ir_swizzle *ir)
1513
{
1514
   src_reg src;
1515
   int i;
1516
   int swizzle[4];
1517
 
1518
   /* Note that this is only swizzles in expressions, not those on the left
1519
    * hand side of an assignment, which do write masking.  See ir_assignment
1520
    * for that.
1521
    */
1522
 
1523
   ir->val->accept(this);
1524
   src = this->result;
1525
   assert(src.file != PROGRAM_UNDEFINED);
1526
 
1527
   for (i = 0; i < 4; i++) {
1528
      if (i < ir->type->vector_elements) {
1529
	 switch (i) {
1530
	 case 0:
1531
	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1532
	    break;
1533
	 case 1:
1534
	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1535
	    break;
1536
	 case 2:
1537
	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1538
	    break;
1539
	 case 3:
1540
	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1541
	    break;
1542
	 }
1543
      } else {
1544
	 /* If the type is smaller than a vec4, replicate the last
1545
	  * channel out.
1546
	  */
1547
	 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1548
      }
1549
   }
1550
 
1551
   src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1552
 
1553
   this->result = src;
1554
}
1555
 
1556
void
1557
ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1558
{
1559
   variable_storage *entry = find_variable_storage(ir->var);
1560
   ir_variable *var = ir->var;
1561
 
1562
   if (!entry) {
1563
      switch (var->mode) {
1564
      case ir_var_uniform:
1565
	 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1566
					       var->location);
1567
	 this->variables.push_tail(entry);
1568
	 break;
1569
      case ir_var_shader_in:
1570
	 /* The linker assigns locations for varyings and attributes,
1571
	  * including deprecated builtins (like gl_Color),
1572
	  * user-assigned generic attributes (glBindVertexLocation),
1573
	  * and user-defined varyings.
1574
	  */
1575
	 assert(var->location != -1);
1576
         entry = new(mem_ctx) variable_storage(var,
1577
                                               PROGRAM_INPUT,
1578
                                               var->location);
1579
         break;
1580
      case ir_var_shader_out:
1581
	 assert(var->location != -1);
1582
         entry = new(mem_ctx) variable_storage(var,
1583
                                               PROGRAM_OUTPUT,
1584
                                               var->location);
1585
	 break;
1586
      case ir_var_system_value:
1587
         entry = new(mem_ctx) variable_storage(var,
1588
                                               PROGRAM_SYSTEM_VALUE,
1589
                                               var->location);
1590
         break;
1591
      case ir_var_auto:
1592
      case ir_var_temporary:
1593
	 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1594
					       this->next_temp);
1595
	 this->variables.push_tail(entry);
1596
 
1597
	 next_temp += type_size(var->type);
1598
	 break;
1599
      }
1600
 
1601
      if (!entry) {
1602
	 printf("Failed to make storage for %s\n", var->name);
1603
	 exit(1);
1604
      }
1605
   }
1606
 
1607
   this->result = src_reg(entry->file, entry->index, var->type);
1608
}
1609
 
1610
void
1611
ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1612
{
1613
   ir_constant *index;
1614
   src_reg src;
1615
   int element_size = type_size(ir->type);
1616
 
1617
   index = ir->array_index->constant_expression_value();
1618
 
1619
   ir->array->accept(this);
1620
   src = this->result;
1621
 
1622
   if (index) {
1623
      src.index += index->value.i[0] * element_size;
1624
   } else {
1625
      /* Variable index array dereference.  It eats the "vec4" of the
1626
       * base of the array and an index that offsets the Mesa register
1627
       * index.
1628
       */
1629
      ir->array_index->accept(this);
1630
 
1631
      src_reg index_reg;
1632
 
1633
      if (element_size == 1) {
1634
	 index_reg = this->result;
1635
      } else {
1636
	 index_reg = get_temp(glsl_type::float_type);
1637
 
1638
	 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1639
	      this->result, src_reg_for_float(element_size));
1640
      }
1641
 
1642
      /* If there was already a relative address register involved, add the
1643
       * new and the old together to get the new offset.
1644
       */
1645
      if (src.reladdr != NULL)  {
1646
	 src_reg accum_reg = get_temp(glsl_type::float_type);
1647
 
1648
	 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1649
	      index_reg, *src.reladdr);
1650
 
1651
	 index_reg = accum_reg;
1652
      }
1653
 
1654
      src.reladdr = ralloc(mem_ctx, src_reg);
1655
      memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1656
   }
1657
 
1658
   /* If the type is smaller than a vec4, replicate the last channel out. */
1659
   if (ir->type->is_scalar() || ir->type->is_vector())
1660
      src.swizzle = swizzle_for_size(ir->type->vector_elements);
1661
   else
1662
      src.swizzle = SWIZZLE_NOOP;
1663
 
1664
   this->result = src;
1665
}
1666
 
1667
void
1668
ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1669
{
1670
   unsigned int i;
1671
   const glsl_type *struct_type = ir->record->type;
1672
   int offset = 0;
1673
 
1674
   ir->record->accept(this);
1675
 
1676
   for (i = 0; i < struct_type->length; i++) {
1677
      if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1678
	 break;
1679
      offset += type_size(struct_type->fields.structure[i].type);
1680
   }
1681
 
1682
   /* If the type is smaller than a vec4, replicate the last channel out. */
1683
   if (ir->type->is_scalar() || ir->type->is_vector())
1684
      this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1685
   else
1686
      this->result.swizzle = SWIZZLE_NOOP;
1687
 
1688
   this->result.index += offset;
1689
}
1690
 
1691
/**
1692
 * We want to be careful in assignment setup to hit the actual storage
1693
 * instead of potentially using a temporary like we might with the
1694
 * ir_dereference handler.
1695
 */
1696
static dst_reg
1697
get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1698
{
1699
   /* The LHS must be a dereference.  If the LHS is a variable indexed array
1700
    * access of a vector, it must be separated into a series conditional moves
1701
    * before reaching this point (see ir_vec_index_to_cond_assign).
1702
    */
1703
   assert(ir->as_dereference());
1704
   ir_dereference_array *deref_array = ir->as_dereference_array();
1705
   if (deref_array) {
1706
      assert(!deref_array->array->type->is_vector());
1707
   }
1708
 
1709
   /* Use the rvalue deref handler for the most part.  We'll ignore
1710
    * swizzles in it and write swizzles using writemask, though.
1711
    */
1712
   ir->accept(v);
1713
   return dst_reg(v->result);
1714
}
1715
 
1716
/**
1717
 * Process the condition of a conditional assignment
1718
 *
1719
 * Examines the condition of a conditional assignment to generate the optimal
1720
 * first operand of a \c CMP instruction.  If the condition is a relational
1721
 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1722
 * used as the source for the \c CMP instruction.  Otherwise the comparison
1723
 * is processed to a boolean result, and the boolean result is used as the
1724
 * operand to the CMP instruction.
1725
 */
1726
bool
1727
ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1728
{
1729
   ir_rvalue *src_ir = ir;
1730
   bool negate = true;
1731
   bool switch_order = false;
1732
 
1733
   ir_expression *const expr = ir->as_expression();
1734
   if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1735
      bool zero_on_left = false;
1736
 
1737
      if (expr->operands[0]->is_zero()) {
1738
	 src_ir = expr->operands[1];
1739
	 zero_on_left = true;
1740
      } else if (expr->operands[1]->is_zero()) {
1741
	 src_ir = expr->operands[0];
1742
	 zero_on_left = false;
1743
      }
1744
 
1745
      /*      a is -  0  +            -  0  +
1746
       * (a <  0)  T  F  F  ( a < 0)  T  F  F
1747
       * (0 <  a)  F  F  T  (-a < 0)  F  F  T
1748
       * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
1749
       * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
1750
       * (a >  0)  F  F  T  (-a < 0)  F  F  T
1751
       * (0 >  a)  T  F  F  ( a < 0)  T  F  F
1752
       * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
1753
       * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
1754
       *
1755
       * Note that exchanging the order of 0 and 'a' in the comparison simply
1756
       * means that the value of 'a' should be negated.
1757
       */
1758
      if (src_ir != ir) {
1759
	 switch (expr->operation) {
1760
	 case ir_binop_less:
1761
	    switch_order = false;
1762
	    negate = zero_on_left;
1763
	    break;
1764
 
1765
	 case ir_binop_greater:
1766
	    switch_order = false;
1767
	    negate = !zero_on_left;
1768
	    break;
1769
 
1770
	 case ir_binop_lequal:
1771
	    switch_order = true;
1772
	    negate = !zero_on_left;
1773
	    break;
1774
 
1775
	 case ir_binop_gequal:
1776
	    switch_order = true;
1777
	    negate = zero_on_left;
1778
	    break;
1779
 
1780
	 default:
1781
	    /* This isn't the right kind of comparison afterall, so make sure
1782
	     * the whole condition is visited.
1783
	     */
1784
	    src_ir = ir;
1785
	    break;
1786
	 }
1787
      }
1788
   }
1789
 
1790
   src_ir->accept(this);
1791
 
1792
   /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1793
    * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
1794
    * choose which value OPCODE_CMP produces without an extra instruction
1795
    * computing the condition.
1796
    */
1797
   if (negate)
1798
      this->result.negate = ~this->result.negate;
1799
 
1800
   return switch_order;
1801
}
1802
 
1803
void
1804
ir_to_mesa_visitor::visit(ir_assignment *ir)
1805
{
1806
   dst_reg l;
1807
   src_reg r;
1808
   int i;
1809
 
1810
   ir->rhs->accept(this);
1811
   r = this->result;
1812
 
1813
   l = get_assignment_lhs(ir->lhs, this);
1814
 
1815
   /* FINISHME: This should really set to the correct maximal writemask for each
1816
    * FINISHME: component written (in the loops below).  This case can only
1817
    * FINISHME: occur for matrices, arrays, and structures.
1818
    */
1819
   if (ir->write_mask == 0) {
1820
      assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1821
      l.writemask = WRITEMASK_XYZW;
1822
   } else if (ir->lhs->type->is_scalar()) {
1823
      /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1824
       * FINISHME: W component of fragment shader output zero, work correctly.
1825
       */
1826
      l.writemask = WRITEMASK_XYZW;
1827
   } else {
1828
      int swizzles[4];
1829
      int first_enabled_chan = 0;
1830
      int rhs_chan = 0;
1831
 
1832
      assert(ir->lhs->type->is_vector());
1833
      l.writemask = ir->write_mask;
1834
 
1835
      for (int i = 0; i < 4; i++) {
1836
	 if (l.writemask & (1 << i)) {
1837
	    first_enabled_chan = GET_SWZ(r.swizzle, i);
1838
	    break;
1839
	 }
1840
      }
1841
 
1842
      /* Swizzle a small RHS vector into the channels being written.
1843
       *
1844
       * glsl ir treats write_mask as dictating how many channels are
1845
       * present on the RHS while Mesa IR treats write_mask as just
1846
       * showing which channels of the vec4 RHS get written.
1847
       */
1848
      for (int i = 0; i < 4; i++) {
1849
	 if (l.writemask & (1 << i))
1850
	    swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1851
	 else
1852
	    swizzles[i] = first_enabled_chan;
1853
      }
1854
      r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1855
				swizzles[2], swizzles[3]);
1856
   }
1857
 
1858
   assert(l.file != PROGRAM_UNDEFINED);
1859
   assert(r.file != PROGRAM_UNDEFINED);
1860
 
1861
   if (ir->condition) {
1862
      const bool switch_order = this->process_move_condition(ir->condition);
1863
      src_reg condition = this->result;
1864
 
1865
      for (i = 0; i < type_size(ir->lhs->type); i++) {
1866
	 if (switch_order) {
1867
	    emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1868
	 } else {
1869
	    emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1870
	 }
1871
 
1872
	 l.index++;
1873
	 r.index++;
1874
      }
1875
   } else {
1876
      for (i = 0; i < type_size(ir->lhs->type); i++) {
1877
	 emit(ir, OPCODE_MOV, l, r);
1878
	 l.index++;
1879
	 r.index++;
1880
      }
1881
   }
1882
}
1883
 
1884
 
1885
void
1886
ir_to_mesa_visitor::visit(ir_constant *ir)
1887
{
1888
   src_reg src;
1889
   GLfloat stack_vals[4] = { 0 };
1890
   GLfloat *values = stack_vals;
1891
   unsigned int i;
1892
 
1893
   /* Unfortunately, 4 floats is all we can get into
1894
    * _mesa_add_unnamed_constant.  So, make a temp to store an
1895
    * aggregate constant and move each constant value into it.  If we
1896
    * get lucky, copy propagation will eliminate the extra moves.
1897
    */
1898
 
1899
   if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1900
      src_reg temp_base = get_temp(ir->type);
1901
      dst_reg temp = dst_reg(temp_base);
1902
 
1903
      foreach_iter(exec_list_iterator, iter, ir->components) {
1904
	 ir_constant *field_value = (ir_constant *)iter.get();
1905
	 int size = type_size(field_value->type);
1906
 
1907
	 assert(size > 0);
1908
 
1909
	 field_value->accept(this);
1910
	 src = this->result;
1911
 
1912
	 for (i = 0; i < (unsigned int)size; i++) {
1913
	    emit(ir, OPCODE_MOV, temp, src);
1914
 
1915
	    src.index++;
1916
	    temp.index++;
1917
	 }
1918
      }
1919
      this->result = temp_base;
1920
      return;
1921
   }
1922
 
1923
   if (ir->type->is_array()) {
1924
      src_reg temp_base = get_temp(ir->type);
1925
      dst_reg temp = dst_reg(temp_base);
1926
      int size = type_size(ir->type->fields.array);
1927
 
1928
      assert(size > 0);
1929
 
1930
      for (i = 0; i < ir->type->length; i++) {
1931
	 ir->array_elements[i]->accept(this);
1932
	 src = this->result;
1933
	 for (int j = 0; j < size; j++) {
1934
	    emit(ir, OPCODE_MOV, temp, src);
1935
 
1936
	    src.index++;
1937
	    temp.index++;
1938
	 }
1939
      }
1940
      this->result = temp_base;
1941
      return;
1942
   }
1943
 
1944
   if (ir->type->is_matrix()) {
1945
      src_reg mat = get_temp(ir->type);
1946
      dst_reg mat_column = dst_reg(mat);
1947
 
1948
      for (i = 0; i < ir->type->matrix_columns; i++) {
1949
	 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1950
	 values = &ir->value.f[i * ir->type->vector_elements];
1951
 
1952
	 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1953
	 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1954
						(gl_constant_value *) values,
1955
						ir->type->vector_elements,
1956
						&src.swizzle);
1957
	 emit(ir, OPCODE_MOV, mat_column, src);
1958
 
1959
	 mat_column.index++;
1960
      }
1961
 
1962
      this->result = mat;
1963
      return;
1964
   }
1965
 
1966
   src.file = PROGRAM_CONSTANT;
1967
   switch (ir->type->base_type) {
1968
   case GLSL_TYPE_FLOAT:
1969
      values = &ir->value.f[0];
1970
      break;
1971
   case GLSL_TYPE_UINT:
1972
      for (i = 0; i < ir->type->vector_elements; i++) {
1973
	 values[i] = ir->value.u[i];
1974
      }
1975
      break;
1976
   case GLSL_TYPE_INT:
1977
      for (i = 0; i < ir->type->vector_elements; i++) {
1978
	 values[i] = ir->value.i[i];
1979
      }
1980
      break;
1981
   case GLSL_TYPE_BOOL:
1982
      for (i = 0; i < ir->type->vector_elements; i++) {
1983
	 values[i] = ir->value.b[i];
1984
      }
1985
      break;
1986
   default:
1987
      assert(!"Non-float/uint/int/bool constant");
1988
   }
1989
 
1990
   this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1991
   this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1992
						   (gl_constant_value *) values,
1993
						   ir->type->vector_elements,
1994
						   &this->result.swizzle);
1995
}
1996
 
1997
void
1998
ir_to_mesa_visitor::visit(ir_call *ir)
1999
{
2000
   assert(!"ir_to_mesa: All function calls should have been inlined by now.");
2001
}
2002
 
2003
void
2004
ir_to_mesa_visitor::visit(ir_texture *ir)
2005
{
2006
   src_reg result_src, coord, lod_info, projector, dx, dy;
2007
   dst_reg result_dst, coord_dst;
2008
   ir_to_mesa_instruction *inst = NULL;
2009
   prog_opcode opcode = OPCODE_NOP;
2010
 
2011
   if (ir->op == ir_txs)
2012
      this->result = src_reg_for_float(0.0);
2013
   else
2014
      ir->coordinate->accept(this);
2015
 
2016
   /* Put our coords in a temp.  We'll need to modify them for shadow,
2017
    * projection, or LOD, so the only case we'd use it as is is if
2018
    * we're doing plain old texturing.  Mesa IR optimization should
2019
    * handle cleaning up our mess in that case.
2020
    */
2021
   coord = get_temp(glsl_type::vec4_type);
2022
   coord_dst = dst_reg(coord);
2023
   emit(ir, OPCODE_MOV, coord_dst, this->result);
2024
 
2025
   if (ir->projector) {
2026
      ir->projector->accept(this);
2027
      projector = this->result;
2028
   }
2029
 
2030
   /* Storage for our result.  Ideally for an assignment we'd be using
2031
    * the actual storage for the result here, instead.
2032
    */
2033
   result_src = get_temp(glsl_type::vec4_type);
2034
   result_dst = dst_reg(result_src);
2035
 
2036
   switch (ir->op) {
2037
   case ir_tex:
2038
   case ir_txs:
2039
      opcode = OPCODE_TEX;
2040
      break;
2041
   case ir_txb:
2042
      opcode = OPCODE_TXB;
2043
      ir->lod_info.bias->accept(this);
2044
      lod_info = this->result;
2045
      break;
2046
   case ir_txf:
2047
      /* Pretend to be TXL so the sampler, coordinate, lod are available */
2048
   case ir_txl:
2049
      opcode = OPCODE_TXL;
2050
      ir->lod_info.lod->accept(this);
2051
      lod_info = this->result;
2052
      break;
2053
   case ir_txd:
2054
      opcode = OPCODE_TXD;
2055
      ir->lod_info.grad.dPdx->accept(this);
2056
      dx = this->result;
2057
      ir->lod_info.grad.dPdy->accept(this);
2058
      dy = this->result;
2059
      break;
2060
   case ir_txf_ms:
2061
      assert(!"Unexpected ir_txf_ms opcode");
2062
      break;
2063
   case ir_lod:
2064
      assert(!"Unexpected ir_lod opcode");
2065
      break;
2066
   }
2067
 
2068
   const glsl_type *sampler_type = ir->sampler->type;
2069
 
2070
   if (ir->projector) {
2071
      if (opcode == OPCODE_TEX) {
2072
	 /* Slot the projector in as the last component of the coord. */
2073
	 coord_dst.writemask = WRITEMASK_W;
2074
	 emit(ir, OPCODE_MOV, coord_dst, projector);
2075
	 coord_dst.writemask = WRITEMASK_XYZW;
2076
	 opcode = OPCODE_TXP;
2077
      } else {
2078
	 src_reg coord_w = coord;
2079
	 coord_w.swizzle = SWIZZLE_WWWW;
2080
 
2081
	 /* For the other TEX opcodes there's no projective version
2082
	  * since the last slot is taken up by lod info.  Do the
2083
	  * projective divide now.
2084
	  */
2085
	 coord_dst.writemask = WRITEMASK_W;
2086
	 emit(ir, OPCODE_RCP, coord_dst, projector);
2087
 
2088
	 /* In the case where we have to project the coordinates "by hand,"
2089
	  * the shadow comparitor value must also be projected.
2090
	  */
2091
	 src_reg tmp_src = coord;
2092
	 if (ir->shadow_comparitor) {
2093
	    /* Slot the shadow value in as the second to last component of the
2094
	     * coord.
2095
	     */
2096
	    ir->shadow_comparitor->accept(this);
2097
 
2098
	    tmp_src = get_temp(glsl_type::vec4_type);
2099
	    dst_reg tmp_dst = dst_reg(tmp_src);
2100
 
2101
	    /* Projective division not allowed for array samplers. */
2102
	    assert(!sampler_type->sampler_array);
2103
 
2104
	    tmp_dst.writemask = WRITEMASK_Z;
2105
	    emit(ir, OPCODE_MOV, tmp_dst, this->result);
2106
 
2107
	    tmp_dst.writemask = WRITEMASK_XY;
2108
	    emit(ir, OPCODE_MOV, tmp_dst, coord);
2109
	 }
2110
 
2111
	 coord_dst.writemask = WRITEMASK_XYZ;
2112
	 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2113
 
2114
	 coord_dst.writemask = WRITEMASK_XYZW;
2115
	 coord.swizzle = SWIZZLE_XYZW;
2116
      }
2117
   }
2118
 
2119
   /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2120
    * comparitor was put in the correct place (and projected) by the code,
2121
    * above, that handles by-hand projection.
2122
    */
2123
   if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2124
      /* Slot the shadow value in as the second to last component of the
2125
       * coord.
2126
       */
2127
      ir->shadow_comparitor->accept(this);
2128
 
2129
      /* XXX This will need to be updated for cubemap array samplers. */
2130
      if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2131
          sampler_type->sampler_array) {
2132
         coord_dst.writemask = WRITEMASK_W;
2133
      } else {
2134
         coord_dst.writemask = WRITEMASK_Z;
2135
      }
2136
 
2137
      emit(ir, OPCODE_MOV, coord_dst, this->result);
2138
      coord_dst.writemask = WRITEMASK_XYZW;
2139
   }
2140
 
2141
   if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2142
      /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2143
      coord_dst.writemask = WRITEMASK_W;
2144
      emit(ir, OPCODE_MOV, coord_dst, lod_info);
2145
      coord_dst.writemask = WRITEMASK_XYZW;
2146
   }
2147
 
2148
   if (opcode == OPCODE_TXD)
2149
      inst = emit(ir, opcode, result_dst, coord, dx, dy);
2150
   else
2151
      inst = emit(ir, opcode, result_dst, coord);
2152
 
2153
   if (ir->shadow_comparitor)
2154
      inst->tex_shadow = GL_TRUE;
2155
 
2156
   inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2157
						   this->shader_program,
2158
						   this->prog);
2159
 
2160
   switch (sampler_type->sampler_dimensionality) {
2161
   case GLSL_SAMPLER_DIM_1D:
2162
      inst->tex_target = (sampler_type->sampler_array)
2163
	 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2164
      break;
2165
   case GLSL_SAMPLER_DIM_2D:
2166
      inst->tex_target = (sampler_type->sampler_array)
2167
	 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2168
      break;
2169
   case GLSL_SAMPLER_DIM_3D:
2170
      inst->tex_target = TEXTURE_3D_INDEX;
2171
      break;
2172
   case GLSL_SAMPLER_DIM_CUBE:
2173
      inst->tex_target = TEXTURE_CUBE_INDEX;
2174
      break;
2175
   case GLSL_SAMPLER_DIM_RECT:
2176
      inst->tex_target = TEXTURE_RECT_INDEX;
2177
      break;
2178
   case GLSL_SAMPLER_DIM_BUF:
2179
      assert(!"FINISHME: Implement ARB_texture_buffer_object");
2180
      break;
2181
   case GLSL_SAMPLER_DIM_EXTERNAL:
2182
      inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2183
      break;
2184
   default:
2185
      assert(!"Should not get here.");
2186
   }
2187
 
2188
   this->result = result_src;
2189
}
2190
 
2191
void
2192
ir_to_mesa_visitor::visit(ir_return *ir)
2193
{
2194
   /* Non-void functions should have been inlined.  We may still emit RETs
2195
    * from main() unless the EmitNoMainReturn option is set.
2196
    */
2197
   assert(!ir->get_value());
2198
   emit(ir, OPCODE_RET);
2199
}
2200
 
2201
void
2202
ir_to_mesa_visitor::visit(ir_discard *ir)
2203
{
2204
   if (ir->condition) {
2205
      ir->condition->accept(this);
2206
      this->result.negate = ~this->result.negate;
2207
      emit(ir, OPCODE_KIL, undef_dst, this->result);
2208
   } else {
2209
      emit(ir, OPCODE_KIL_NV);
2210
   }
2211
}
2212
 
2213
void
2214
ir_to_mesa_visitor::visit(ir_if *ir)
2215
{
2216
   ir_to_mesa_instruction *cond_inst, *if_inst;
2217
   ir_to_mesa_instruction *prev_inst;
2218
 
2219
   prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2220
 
2221
   ir->condition->accept(this);
2222
   assert(this->result.file != PROGRAM_UNDEFINED);
2223
 
2224
   if (this->options->EmitCondCodes) {
2225
      cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2226
 
2227
      /* See if we actually generated any instruction for generating
2228
       * the condition.  If not, then cook up a move to a temp so we
2229
       * have something to set cond_update on.
2230
       */
2231
      if (cond_inst == prev_inst) {
2232
	 src_reg temp = get_temp(glsl_type::bool_type);
2233
	 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2234
      }
2235
      cond_inst->cond_update = GL_TRUE;
2236
 
2237
      if_inst = emit(ir->condition, OPCODE_IF);
2238
      if_inst->dst.cond_mask = COND_NE;
2239
   } else {
2240
      if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2241
   }
2242
 
2243
   this->instructions.push_tail(if_inst);
2244
 
2245
   visit_exec_list(&ir->then_instructions, this);
2246
 
2247
   if (!ir->else_instructions.is_empty()) {
2248
      emit(ir->condition, OPCODE_ELSE);
2249
      visit_exec_list(&ir->else_instructions, this);
2250
   }
2251
 
2252
   if_inst = emit(ir->condition, OPCODE_ENDIF);
2253
}
2254
 
2255
ir_to_mesa_visitor::ir_to_mesa_visitor()
2256
{
2257
   result.file = PROGRAM_UNDEFINED;
2258
   next_temp = 1;
2259
   next_signature_id = 1;
2260
   current_function = NULL;
2261
   mem_ctx = ralloc_context(NULL);
2262
}
2263
 
2264
ir_to_mesa_visitor::~ir_to_mesa_visitor()
2265
{
2266
   ralloc_free(mem_ctx);
2267
}
2268
 
2269
static struct prog_src_register
2270
mesa_src_reg_from_ir_src_reg(src_reg reg)
2271
{
2272
   struct prog_src_register mesa_reg;
2273
 
2274
   mesa_reg.File = reg.file;
2275
   assert(reg.index < (1 << INST_INDEX_BITS));
2276
   mesa_reg.Index = reg.index;
2277
   mesa_reg.Swizzle = reg.swizzle;
2278
   mesa_reg.RelAddr = reg.reladdr != NULL;
2279
   mesa_reg.Negate = reg.negate;
2280
   mesa_reg.Abs = 0;
2281
   mesa_reg.HasIndex2 = GL_FALSE;
2282
   mesa_reg.RelAddr2 = 0;
2283
   mesa_reg.Index2 = 0;
2284
 
2285
   return mesa_reg;
2286
}
2287
 
2288
static void
2289
set_branchtargets(ir_to_mesa_visitor *v,
2290
		  struct prog_instruction *mesa_instructions,
2291
		  int num_instructions)
2292
{
2293
   int if_count = 0, loop_count = 0;
2294
   int *if_stack, *loop_stack;
2295
   int if_stack_pos = 0, loop_stack_pos = 0;
2296
   int i, j;
2297
 
2298
   for (i = 0; i < num_instructions; i++) {
2299
      switch (mesa_instructions[i].Opcode) {
2300
      case OPCODE_IF:
2301
	 if_count++;
2302
	 break;
2303
      case OPCODE_BGNLOOP:
2304
	 loop_count++;
2305
	 break;
2306
      case OPCODE_BRK:
2307
      case OPCODE_CONT:
2308
	 mesa_instructions[i].BranchTarget = -1;
2309
	 break;
2310
      default:
2311
	 break;
2312
      }
2313
   }
2314
 
2315
   if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2316
   loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2317
 
2318
   for (i = 0; i < num_instructions; i++) {
2319
      switch (mesa_instructions[i].Opcode) {
2320
      case OPCODE_IF:
2321
	 if_stack[if_stack_pos] = i;
2322
	 if_stack_pos++;
2323
	 break;
2324
      case OPCODE_ELSE:
2325
	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2326
	 if_stack[if_stack_pos - 1] = i;
2327
	 break;
2328
      case OPCODE_ENDIF:
2329
	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2330
	 if_stack_pos--;
2331
	 break;
2332
      case OPCODE_BGNLOOP:
2333
	 loop_stack[loop_stack_pos] = i;
2334
	 loop_stack_pos++;
2335
	 break;
2336
      case OPCODE_ENDLOOP:
2337
	 loop_stack_pos--;
2338
	 /* Rewrite any breaks/conts at this nesting level (haven't
2339
	  * already had a BranchTarget assigned) to point to the end
2340
	  * of the loop.
2341
	  */
2342
	 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2343
	    if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2344
		mesa_instructions[j].Opcode == OPCODE_CONT) {
2345
	       if (mesa_instructions[j].BranchTarget == -1) {
2346
		  mesa_instructions[j].BranchTarget = i;
2347
	       }
2348
	    }
2349
	 }
2350
	 /* The loop ends point at each other. */
2351
	 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2352
	 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2353
	 break;
2354
      case OPCODE_CAL:
2355
	 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
2356
	    function_entry *entry = (function_entry *)iter.get();
2357
 
2358
	    if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2359
	       mesa_instructions[i].BranchTarget = entry->inst;
2360
	       break;
2361
	    }
2362
	 }
2363
	 break;
2364
      default:
2365
	 break;
2366
      }
2367
   }
2368
}
2369
 
2370
static void
2371
print_program(struct prog_instruction *mesa_instructions,
2372
	      ir_instruction **mesa_instruction_annotation,
2373
	      int num_instructions)
2374
{
2375
   ir_instruction *last_ir = NULL;
2376
   int i;
2377
   int indent = 0;
2378
 
2379
   for (i = 0; i < num_instructions; i++) {
2380
      struct prog_instruction *mesa_inst = mesa_instructions + i;
2381
      ir_instruction *ir = mesa_instruction_annotation[i];
2382
 
2383
      fprintf(stdout, "%3d: ", i);
2384
 
2385
      if (last_ir != ir && ir) {
2386
	 int j;
2387
 
2388
	 for (j = 0; j < indent; j++) {
2389
	    fprintf(stdout, " ");
2390
	 }
2391
	 ir->print();
2392
	 printf("\n");
2393
	 last_ir = ir;
2394
 
2395
	 fprintf(stdout, "     "); /* line number spacing. */
2396
      }
2397
 
2398
      indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2399
					    PROG_PRINT_DEBUG, NULL);
2400
   }
2401
}
2402
 
2403
class add_uniform_to_shader : public program_resource_visitor {
2404
public:
2405
   add_uniform_to_shader(struct gl_shader_program *shader_program,
2406
			 struct gl_program_parameter_list *params,
2407
                         gl_shader_type shader_type)
2408
      : shader_program(shader_program), params(params), idx(-1),
2409
        shader_type(shader_type)
2410
   {
2411
      /* empty */
2412
   }
2413
 
2414
   void process(ir_variable *var)
2415
   {
2416
      this->idx = -1;
2417
      this->program_resource_visitor::process(var);
2418
 
2419
      var->location = this->idx;
2420
   }
2421
 
2422
private:
2423
   virtual void visit_field(const glsl_type *type, const char *name,
2424
                            bool row_major);
2425
 
2426
   struct gl_shader_program *shader_program;
2427
   struct gl_program_parameter_list *params;
2428
   int idx;
2429
   gl_shader_type shader_type;
2430
};
2431
 
2432
void
2433
add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2434
                                   bool row_major)
2435
{
2436
   unsigned int size;
2437
 
2438
   (void) row_major;
2439
 
2440
   if (type->is_vector() || type->is_scalar()) {
2441
      size = type->vector_elements;
2442
   } else {
2443
      size = type_size(type) * 4;
2444
   }
2445
 
2446
   gl_register_file file;
2447
   if (type->is_sampler() ||
2448
       (type->is_array() && type->fields.array->is_sampler())) {
2449
      file = PROGRAM_SAMPLER;
2450
   } else {
2451
      file = PROGRAM_UNIFORM;
2452
   }
2453
 
2454
   int index = _mesa_lookup_parameter_index(params, -1, name);
2455
   if (index < 0) {
2456
      index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2457
				  NULL, NULL);
2458
 
2459
      /* Sampler uniform values are stored in prog->SamplerUnits,
2460
       * and the entry in that array is selected by this index we
2461
       * store in ParameterValues[].
2462
       */
2463
      if (file == PROGRAM_SAMPLER) {
2464
	 unsigned location;
2465
	 const bool found =
2466
	    this->shader_program->UniformHash->get(location,
2467
						   params->Parameters[index].Name);
2468
	 assert(found);
2469
 
2470
	 if (!found)
2471
	    return;
2472
 
2473
	 struct gl_uniform_storage *storage =
2474
	    &this->shader_program->UniformStorage[location];
2475
 
2476
         assert(storage->sampler[shader_type].active);
2477
 
2478
	 for (unsigned int j = 0; j < size / 4; j++)
2479
            params->ParameterValues[index + j][0].f =
2480
               storage->sampler[shader_type].index + j;
2481
      }
2482
   }
2483
 
2484
   /* The first part of the uniform that's processed determines the base
2485
    * location of the whole uniform (for structures).
2486
    */
2487
   if (this->idx < 0)
2488
      this->idx = index;
2489
}
2490
 
2491
/**
2492
 * Generate the program parameters list for the user uniforms in a shader
2493
 *
2494
 * \param shader_program Linked shader program.  This is only used to
2495
 *                       emit possible link errors to the info log.
2496
 * \param sh             Shader whose uniforms are to be processed.
2497
 * \param params         Parameter list to be filled in.
2498
 */
2499
void
2500
_mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2501
					    *shader_program,
2502
					    struct gl_shader *sh,
2503
					    struct gl_program_parameter_list
2504
					    *params)
2505
{
2506
   add_uniform_to_shader add(shader_program, params,
2507
                             _mesa_shader_type_to_index(sh->Type));
2508
 
2509
   foreach_list(node, sh->ir) {
2510
      ir_variable *var = ((ir_instruction *) node)->as_variable();
2511
 
2512
      if ((var == NULL) || (var->mode != ir_var_uniform)
2513
	  || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2514
	 continue;
2515
 
2516
      add.process(var);
2517
   }
2518
}
2519
 
2520
void
2521
_mesa_associate_uniform_storage(struct gl_context *ctx,
2522
				struct gl_shader_program *shader_program,
2523
				struct gl_program_parameter_list *params)
2524
{
2525
   /* After adding each uniform to the parameter list, connect the storage for
2526
    * the parameter with the tracking structure used by the API for the
2527
    * uniform.
2528
    */
2529
   unsigned last_location = unsigned(~0);
2530
   for (unsigned i = 0; i < params->NumParameters; i++) {
2531
      if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2532
	 continue;
2533
 
2534
      unsigned location;
2535
      const bool found =
2536
	 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2537
      assert(found);
2538
 
2539
      if (!found)
2540
	 continue;
2541
 
2542
      if (location != last_location) {
2543
	 struct gl_uniform_storage *storage =
2544
	    &shader_program->UniformStorage[location];
2545
	 enum gl_uniform_driver_format format = uniform_native;
2546
 
2547
	 unsigned columns = 0;
2548
	 switch (storage->type->base_type) {
2549
	 case GLSL_TYPE_UINT:
2550
	    assert(ctx->Const.NativeIntegers);
2551
	    format = uniform_native;
2552
	    columns = 1;
2553
	    break;
2554
	 case GLSL_TYPE_INT:
2555
	    format =
2556
	       (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2557
	    columns = 1;
2558
	    break;
2559
	 case GLSL_TYPE_FLOAT:
2560
	    format = uniform_native;
2561
	    columns = storage->type->matrix_columns;
2562
	    break;
2563
	 case GLSL_TYPE_BOOL:
2564
	    if (ctx->Const.NativeIntegers) {
2565
	       format = (ctx->Const.UniformBooleanTrue == 1)
2566
		  ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
2567
	    } else {
2568
	       format = uniform_bool_float;
2569
	    }
2570
	    columns = 1;
2571
	    break;
2572
	 case GLSL_TYPE_SAMPLER:
2573
	    format = uniform_native;
2574
	    columns = 1;
2575
	    break;
2576
         case GLSL_TYPE_ARRAY:
2577
         case GLSL_TYPE_VOID:
2578
         case GLSL_TYPE_STRUCT:
2579
         case GLSL_TYPE_ERROR:
2580
         case GLSL_TYPE_INTERFACE:
2581
	    assert(!"Should not get here.");
2582
	    break;
2583
	 }
2584
 
2585
	 _mesa_uniform_attach_driver_storage(storage,
2586
					     4 * sizeof(float) * columns,
2587
					     4 * sizeof(float),
2588
					     format,
2589
					     ¶ms->ParameterValues[i]);
2590
 
2591
	 /* After attaching the driver's storage to the uniform, propagate any
2592
	  * data from the linker's backing store.  This will cause values from
2593
	  * initializers in the source code to be copied over.
2594
	  */
2595
	 _mesa_propagate_uniforms_to_driver_storage(storage,
2596
						    0,
2597
						    MAX2(1, storage->array_elements));
2598
 
2599
	 last_location = location;
2600
      }
2601
   }
2602
}
2603
 
2604
/*
2605
 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2606
 * channels for copy propagation and updates following instructions to
2607
 * use the original versions.
2608
 *
2609
 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2610
 * will occur.  As an example, a TXP production before this pass:
2611
 *
2612
 * 0: MOV TEMP[1], INPUT[4].xyyy;
2613
 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2614
 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2615
 *
2616
 * and after:
2617
 *
2618
 * 0: MOV TEMP[1], INPUT[4].xyyy;
2619
 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2620
 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2621
 *
2622
 * which allows for dead code elimination on TEMP[1]'s writes.
2623
 */
2624
void
2625
ir_to_mesa_visitor::copy_propagate(void)
2626
{
2627
   ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2628
						    ir_to_mesa_instruction *,
2629
						    this->next_temp * 4);
2630
   int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2631
   int level = 0;
2632
 
2633
   foreach_iter(exec_list_iterator, iter, this->instructions) {
2634
      ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2635
 
2636
      assert(inst->dst.file != PROGRAM_TEMPORARY
2637
	     || inst->dst.index < this->next_temp);
2638
 
2639
      /* First, do any copy propagation possible into the src regs. */
2640
      for (int r = 0; r < 3; r++) {
2641
	 ir_to_mesa_instruction *first = NULL;
2642
	 bool good = true;
2643
	 int acp_base = inst->src[r].index * 4;
2644
 
2645
	 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2646
	     inst->src[r].reladdr)
2647
	    continue;
2648
 
2649
	 /* See if we can find entries in the ACP consisting of MOVs
2650
	  * from the same src register for all the swizzled channels
2651
	  * of this src register reference.
2652
	  */
2653
	 for (int i = 0; i < 4; i++) {
2654
	    int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2655
	    ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2656
 
2657
	    if (!copy_chan) {
2658
	       good = false;
2659
	       break;
2660
	    }
2661
 
2662
	    assert(acp_level[acp_base + src_chan] <= level);
2663
 
2664
	    if (!first) {
2665
	       first = copy_chan;
2666
	    } else {
2667
	       if (first->src[0].file != copy_chan->src[0].file ||
2668
		   first->src[0].index != copy_chan->src[0].index) {
2669
		  good = false;
2670
		  break;
2671
	       }
2672
	    }
2673
	 }
2674
 
2675
	 if (good) {
2676
	    /* We've now validated that we can copy-propagate to
2677
	     * replace this src register reference.  Do it.
2678
	     */
2679
	    inst->src[r].file = first->src[0].file;
2680
	    inst->src[r].index = first->src[0].index;
2681
 
2682
	    int swizzle = 0;
2683
	    for (int i = 0; i < 4; i++) {
2684
	       int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2685
	       ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2686
	       swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2687
			   (3 * i));
2688
	    }
2689
	    inst->src[r].swizzle = swizzle;
2690
	 }
2691
      }
2692
 
2693
      switch (inst->op) {
2694
      case OPCODE_BGNLOOP:
2695
      case OPCODE_ENDLOOP:
2696
	 /* End of a basic block, clear the ACP entirely. */
2697
	 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2698
	 break;
2699
 
2700
      case OPCODE_IF:
2701
	 ++level;
2702
	 break;
2703
 
2704
      case OPCODE_ENDIF:
2705
      case OPCODE_ELSE:
2706
	 /* Clear all channels written inside the block from the ACP, but
2707
	  * leaving those that were not touched.
2708
	  */
2709
	 for (int r = 0; r < this->next_temp; r++) {
2710
	    for (int c = 0; c < 4; c++) {
2711
	       if (!acp[4 * r + c])
2712
		  continue;
2713
 
2714
	       if (acp_level[4 * r + c] >= level)
2715
		  acp[4 * r + c] = NULL;
2716
	    }
2717
	 }
2718
	 if (inst->op == OPCODE_ENDIF)
2719
	    --level;
2720
	 break;
2721
 
2722
      default:
2723
	 /* Continuing the block, clear any written channels from
2724
	  * the ACP.
2725
	  */
2726
	 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2727
	    /* Any temporary might be written, so no copy propagation
2728
	     * across this instruction.
2729
	     */
2730
	    memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2731
	 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2732
		    inst->dst.reladdr) {
2733
	    /* Any output might be written, so no copy propagation
2734
	     * from outputs across this instruction.
2735
	     */
2736
	    for (int r = 0; r < this->next_temp; r++) {
2737
	       for (int c = 0; c < 4; c++) {
2738
		  if (!acp[4 * r + c])
2739
		     continue;
2740
 
2741
		  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2742
		     acp[4 * r + c] = NULL;
2743
	       }
2744
	    }
2745
	 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2746
		    inst->dst.file == PROGRAM_OUTPUT) {
2747
	    /* Clear where it's used as dst. */
2748
	    if (inst->dst.file == PROGRAM_TEMPORARY) {
2749
	       for (int c = 0; c < 4; c++) {
2750
		  if (inst->dst.writemask & (1 << c)) {
2751
		     acp[4 * inst->dst.index + c] = NULL;
2752
		  }
2753
	       }
2754
	    }
2755
 
2756
	    /* Clear where it's used as src. */
2757
	    for (int r = 0; r < this->next_temp; r++) {
2758
	       for (int c = 0; c < 4; c++) {
2759
		  if (!acp[4 * r + c])
2760
		     continue;
2761
 
2762
		  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2763
 
2764
		  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2765
		      acp[4 * r + c]->src[0].index == inst->dst.index &&
2766
		      inst->dst.writemask & (1 << src_chan))
2767
		  {
2768
		     acp[4 * r + c] = NULL;
2769
		  }
2770
	       }
2771
	    }
2772
	 }
2773
	 break;
2774
      }
2775
 
2776
      /* If this is a copy, add it to the ACP. */
2777
      if (inst->op == OPCODE_MOV &&
2778
	  inst->dst.file == PROGRAM_TEMPORARY &&
2779
	  !(inst->dst.file == inst->src[0].file &&
2780
	    inst->dst.index == inst->src[0].index) &&
2781
	  !inst->dst.reladdr &&
2782
	  !inst->saturate &&
2783
	  !inst->src[0].reladdr &&
2784
	  !inst->src[0].negate) {
2785
	 for (int i = 0; i < 4; i++) {
2786
	    if (inst->dst.writemask & (1 << i)) {
2787
	       acp[4 * inst->dst.index + i] = inst;
2788
	       acp_level[4 * inst->dst.index + i] = level;
2789
	    }
2790
	 }
2791
      }
2792
   }
2793
 
2794
   ralloc_free(acp_level);
2795
   ralloc_free(acp);
2796
}
2797
 
2798
 
2799
/**
2800
 * Convert a shader's GLSL IR into a Mesa gl_program.
2801
 */
2802
static struct gl_program *
2803
get_mesa_program(struct gl_context *ctx,
2804
                 struct gl_shader_program *shader_program,
2805
		 struct gl_shader *shader)
2806
{
2807
   ir_to_mesa_visitor v;
2808
   struct prog_instruction *mesa_instructions, *mesa_inst;
2809
   ir_instruction **mesa_instruction_annotation;
2810
   int i;
2811
   struct gl_program *prog;
2812
   GLenum target;
2813
   const char *target_string = _mesa_glsl_shader_target_name(shader->Type);
2814
   struct gl_shader_compiler_options *options =
2815
         &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
2816
 
2817
   switch (shader->Type) {
2818
   case GL_VERTEX_SHADER:
2819
      target = GL_VERTEX_PROGRAM_ARB;
2820
      break;
2821
   case GL_FRAGMENT_SHADER:
2822
      target = GL_FRAGMENT_PROGRAM_ARB;
2823
      break;
2824
   case GL_GEOMETRY_SHADER:
2825
      target = GL_GEOMETRY_PROGRAM_NV;
2826
      break;
2827
   default:
2828
      assert(!"should not be reached");
2829
      return NULL;
2830
   }
2831
 
2832
   validate_ir_tree(shader->ir);
2833
 
2834
   prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2835
   if (!prog)
2836
      return NULL;
2837
   prog->Parameters = _mesa_new_parameter_list();
2838
   v.ctx = ctx;
2839
   v.prog = prog;
2840
   v.shader_program = shader_program;
2841
   v.options = options;
2842
 
2843
   _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2844
					       prog->Parameters);
2845
 
2846
   /* Emit Mesa IR for main(). */
2847
   visit_exec_list(shader->ir, &v);
2848
   v.emit(NULL, OPCODE_END);
2849
 
2850
   prog->NumTemporaries = v.next_temp;
2851
 
2852
   int num_instructions = 0;
2853
   foreach_iter(exec_list_iterator, iter, v.instructions) {
2854
      num_instructions++;
2855
   }
2856
 
2857
   mesa_instructions =
2858
      (struct prog_instruction *)calloc(num_instructions,
2859
					sizeof(*mesa_instructions));
2860
   mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2861
					      num_instructions);
2862
 
2863
   v.copy_propagate();
2864
 
2865
   /* Convert ir_mesa_instructions into prog_instructions.
2866
    */
2867
   mesa_inst = mesa_instructions;
2868
   i = 0;
2869
   foreach_iter(exec_list_iterator, iter, v.instructions) {
2870
      const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2871
 
2872
      mesa_inst->Opcode = inst->op;
2873
      mesa_inst->CondUpdate = inst->cond_update;
2874
      if (inst->saturate)
2875
	 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2876
      mesa_inst->DstReg.File = inst->dst.file;
2877
      mesa_inst->DstReg.Index = inst->dst.index;
2878
      mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2879
      mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2880
      mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2881
      mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2882
      mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2883
      mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2884
      mesa_inst->TexSrcUnit = inst->sampler;
2885
      mesa_inst->TexSrcTarget = inst->tex_target;
2886
      mesa_inst->TexShadow = inst->tex_shadow;
2887
      mesa_instruction_annotation[i] = inst->ir;
2888
 
2889
      /* Set IndirectRegisterFiles. */
2890
      if (mesa_inst->DstReg.RelAddr)
2891
         prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2892
 
2893
      /* Update program's bitmask of indirectly accessed register files */
2894
      for (unsigned src = 0; src < 3; src++)
2895
         if (mesa_inst->SrcReg[src].RelAddr)
2896
            prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2897
 
2898
      switch (mesa_inst->Opcode) {
2899
      case OPCODE_IF:
2900
	 if (options->MaxIfDepth == 0) {
2901
	    linker_warning(shader_program,
2902
			   "Couldn't flatten if-statement.  "
2903
			   "This will likely result in software "
2904
			   "rasterization.\n");
2905
	 }
2906
	 break;
2907
      case OPCODE_BGNLOOP:
2908
	 if (options->EmitNoLoops) {
2909
	    linker_warning(shader_program,
2910
			   "Couldn't unroll loop.  "
2911
			   "This will likely result in software "
2912
			   "rasterization.\n");
2913
	 }
2914
	 break;
2915
      case OPCODE_CONT:
2916
	 if (options->EmitNoCont) {
2917
	    linker_warning(shader_program,
2918
			   "Couldn't lower continue-statement.  "
2919
			   "This will likely result in software "
2920
			   "rasterization.\n");
2921
	 }
2922
	 break;
2923
      case OPCODE_ARL:
2924
	 prog->NumAddressRegs = 1;
2925
	 break;
2926
      default:
2927
	 break;
2928
      }
2929
 
2930
      mesa_inst++;
2931
      i++;
2932
 
2933
      if (!shader_program->LinkStatus)
2934
         break;
2935
   }
2936
 
2937
   if (!shader_program->LinkStatus) {
2938
      goto fail_exit;
2939
   }
2940
 
2941
   set_branchtargets(&v, mesa_instructions, num_instructions);
2942
 
2943
   if (ctx->Shader.Flags & GLSL_DUMP) {
2944
      printf("\n");
2945
      printf("GLSL IR for linked %s program %d:\n", target_string,
2946
	     shader_program->Name);
2947
      _mesa_print_ir(shader->ir, NULL);
2948
      printf("\n");
2949
      printf("\n");
2950
      printf("Mesa IR for linked %s program %d:\n", target_string,
2951
	     shader_program->Name);
2952
      print_program(mesa_instructions, mesa_instruction_annotation,
2953
		    num_instructions);
2954
   }
2955
 
2956
   prog->Instructions = mesa_instructions;
2957
   prog->NumInstructions = num_instructions;
2958
 
2959
   /* Setting this to NULL prevents a possible double free in the fail_exit
2960
    * path (far below).
2961
    */
2962
   mesa_instructions = NULL;
2963
 
2964
   do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
2965
 
2966
   prog->SamplersUsed = shader->active_samplers;
2967
   prog->ShadowSamplers = shader->shadow_samplers;
2968
   _mesa_update_shader_textures_used(shader_program, prog);
2969
 
2970
   /* Set the gl_FragDepth layout. */
2971
   if (target == GL_FRAGMENT_PROGRAM_ARB) {
2972
      struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2973
      fp->FragDepthLayout = shader_program->FragDepthLayout;
2974
   }
2975
 
2976
   _mesa_reference_program(ctx, &shader->Program, prog);
2977
 
2978
   if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
2979
      _mesa_optimize_program(ctx, prog);
2980
   }
2981
 
2982
   /* This has to be done last.  Any operation that can cause
2983
    * prog->ParameterValues to get reallocated (e.g., anything that adds a
2984
    * program constant) has to happen before creating this linkage.
2985
    */
2986
   _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2987
   if (!shader_program->LinkStatus) {
2988
      goto fail_exit;
2989
   }
2990
 
2991
   return prog;
2992
 
2993
fail_exit:
2994
   free(mesa_instructions);
2995
   _mesa_reference_program(ctx, &shader->Program, NULL);
2996
   return NULL;
2997
}
2998
 
2999
extern "C" {
3000
 
3001
/**
3002
 * Link a shader.
3003
 * Called via ctx->Driver.LinkShader()
3004
 * This actually involves converting GLSL IR into Mesa gl_programs with
3005
 * code lowering and other optimizations.
3006
 */
3007
GLboolean
3008
_mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3009
{
3010
   assert(prog->LinkStatus);
3011
 
3012
   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3013
      if (prog->_LinkedShaders[i] == NULL)
3014
	 continue;
3015
 
3016
      bool progress;
3017
      exec_list *ir = prog->_LinkedShaders[i]->ir;
3018
      const struct gl_shader_compiler_options *options =
3019
            &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
3020
 
3021
      do {
3022
	 progress = false;
3023
 
3024
	 /* Lowering */
3025
	 do_mat_op_to_vec(ir);
3026
	 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
3027
				 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3028
				 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3029
 
3030
	 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3031
 
3032
	 progress = do_common_optimization(ir, true, true,
3033
					   options->MaxUnrollIterations,
3034
                                           options)
3035
	   || progress;
3036
 
3037
	 progress = lower_quadop_vector(ir, true) || progress;
3038
 
3039
	 if (options->MaxIfDepth == 0)
3040
	    progress = lower_discard(ir) || progress;
3041
 
3042
	 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
3043
 
3044
	 if (options->EmitNoNoise)
3045
	    progress = lower_noise(ir) || progress;
3046
 
3047
	 /* If there are forms of indirect addressing that the driver
3048
	  * cannot handle, perform the lowering pass.
3049
	  */
3050
	 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3051
	     || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3052
	   progress =
3053
	     lower_variable_index_to_cond_assign(ir,
3054
						 options->EmitNoIndirectInput,
3055
						 options->EmitNoIndirectOutput,
3056
						 options->EmitNoIndirectTemp,
3057
						 options->EmitNoIndirectUniform)
3058
	     || progress;
3059
 
3060
	 progress = do_vec_index_to_cond_assign(ir) || progress;
3061
         progress = lower_vector_insert(ir, true) || progress;
3062
      } while (progress);
3063
 
3064
      validate_ir_tree(ir);
3065
   }
3066
 
3067
   for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3068
      struct gl_program *linked_prog;
3069
 
3070
      if (prog->_LinkedShaders[i] == NULL)
3071
	 continue;
3072
 
3073
      linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3074
 
3075
      if (linked_prog) {
3076
	 if (i == MESA_SHADER_VERTEX) {
3077
            ((struct gl_vertex_program *)linked_prog)->UsesClipDistance
3078
               = prog->Vert.UsesClipDistance;
3079
	 }
3080
 
3081
	 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3082
				 linked_prog);
3083
         if (!ctx->Driver.ProgramStringNotify(ctx,
3084
                                              _mesa_program_index_to_target(i),
3085
                                              linked_prog)) {
3086
            return GL_FALSE;
3087
         }
3088
      }
3089
 
3090
      _mesa_reference_program(ctx, &linked_prog, NULL);
3091
   }
3092
 
3093
   return prog->LinkStatus;
3094
}
3095
 
3096
/**
3097
 * Link a GLSL shader program.  Called via glLinkProgram().
3098
 */
3099
void
3100
_mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3101
{
3102
   unsigned int i;
3103
 
3104
   _mesa_clear_shader_program_data(ctx, prog);
3105
 
3106
   prog->LinkStatus = GL_TRUE;
3107
 
3108
   for (i = 0; i < prog->NumShaders; i++) {
3109
      if (!prog->Shaders[i]->CompileStatus) {
3110
	 linker_error(prog, "linking with uncompiled shader");
3111
	 prog->LinkStatus = GL_FALSE;
3112
      }
3113
   }
3114
 
3115
   if (prog->LinkStatus) {
3116
      link_shaders(ctx, prog);
3117
   }
3118
 
3119
   if (prog->LinkStatus) {
3120
      if (!ctx->Driver.LinkShader(ctx, prog)) {
3121
	 prog->LinkStatus = GL_FALSE;
3122
      }
3123
   }
3124
 
3125
   if (ctx->Shader.Flags & GLSL_DUMP) {
3126
      if (!prog->LinkStatus) {
3127
	 printf("GLSL shader program %d failed to link\n", prog->Name);
3128
      }
3129
 
3130
      if (prog->InfoLog && prog->InfoLog[0] != 0) {
3131
	 printf("GLSL shader program %d info log:\n", prog->Name);
3132
	 printf("%s\n", prog->InfoLog);
3133
      }
3134
   }
3135
}
3136
 
3137
} /* extern "C" */