Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5564 serge 1
/*
2
 * Copyright © 2009-2012 Intel Corporation
3
 * Copyright © 1988-2004 Keith Packard and Bart Massey.
4
 *
5
 * Permission is hereby granted, free of charge, to any person obtaining a
6
 * copy of this software and associated documentation files (the "Software"),
7
 * to deal in the Software without restriction, including without limitation
8
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
 * and/or sell copies of the Software, and to permit persons to whom the
10
 * Software is furnished to do so, subject to the following conditions:
11
 *
12
 * The above copyright notice and this permission notice (including the next
13
 * paragraph) shall be included in all copies or substantial portions of the
14
 * Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22
 * IN THE SOFTWARE.
23
 *
24
 * Except as contained in this notice, the names of the authors
25
 * or their institutions shall not be used in advertising or
26
 * otherwise to promote the sale, use or other dealings in this
27
 * Software without prior written authorization from the
28
 * authors.
29
 *
30
 * Authors:
31
 *    Eric Anholt 
32
 *    Keith Packard 
33
 */
34
 
35
#include 
36
#include 
37
 
38
#include "macros.h"
39
#include "ralloc.h"
40
#include "set.h"
41
 
42
/*
43
 * From Knuth -- a good choice for hash/rehash values is p, p-2 where
44
 * p and p-2 are both prime.  These tables are sized to have an extra 10%
45
 * free to avoid exponential performance degradation as the hash table fills
46
 */
47
 
48
uint32_t deleted_key_value;
49
const void *deleted_key = &deleted_key_value;
50
 
51
static const struct {
52
   uint32_t max_entries, size, rehash;
53
} hash_sizes[] = {
54
   { 2,            5,            3            },
55
   { 4,            7,            5            },
56
   { 8,            13,           11           },
57
   { 16,           19,           17           },
58
   { 32,           43,           41           },
59
   { 64,           73,           71           },
60
   { 128,          151,          149          },
61
   { 256,          283,          281          },
62
   { 512,          571,          569          },
63
   { 1024,         1153,         1151         },
64
   { 2048,         2269,         2267         },
65
   { 4096,         4519,         4517         },
66
   { 8192,         9013,         9011         },
67
   { 16384,        18043,        18041        },
68
   { 32768,        36109,        36107        },
69
   { 65536,        72091,        72089        },
70
   { 131072,       144409,       144407       },
71
   { 262144,       288361,       288359       },
72
   { 524288,       576883,       576881       },
73
   { 1048576,      1153459,      1153457      },
74
   { 2097152,      2307163,      2307161      },
75
   { 4194304,      4613893,      4613891      },
76
   { 8388608,      9227641,      9227639      },
77
   { 16777216,     18455029,     18455027     },
78
   { 33554432,     36911011,     36911009     },
79
   { 67108864,     73819861,     73819859     },
80
   { 134217728,    147639589,    147639587    },
81
   { 268435456,    295279081,    295279079    },
82
   { 536870912,    590559793,    590559791    },
83
   { 1073741824,   1181116273,   1181116271   },
84
   { 2147483648ul, 2362232233ul, 2362232231ul }
85
};
86
 
87
static int
88
entry_is_free(struct set_entry *entry)
89
{
90
   return entry->key == NULL;
91
}
92
 
93
static int
94
entry_is_deleted(struct set_entry *entry)
95
{
96
   return entry->key == deleted_key;
97
}
98
 
99
static int
100
entry_is_present(struct set_entry *entry)
101
{
102
   return entry->key != NULL && entry->key != deleted_key;
103
}
104
 
105
struct set *
106
_mesa_set_create(void *mem_ctx,
107
                 uint32_t (*key_hash_function)(const void *key),
108
                 bool (*key_equals_function)(const void *a,
109
                                             const void *b))
110
{
111
   struct set *ht;
112
 
113
   ht = ralloc(mem_ctx, struct set);
114
   if (ht == NULL)
115
      return NULL;
116
 
117
   ht->size_index = 0;
118
   ht->size = hash_sizes[ht->size_index].size;
119
   ht->rehash = hash_sizes[ht->size_index].rehash;
120
   ht->max_entries = hash_sizes[ht->size_index].max_entries;
121
   ht->key_hash_function = key_hash_function;
122
   ht->key_equals_function = key_equals_function;
123
   ht->table = rzalloc_array(ht, struct set_entry, ht->size);
124
   ht->entries = 0;
125
   ht->deleted_entries = 0;
126
 
127
   if (ht->table == NULL) {
128
      ralloc_free(ht);
129
      return NULL;
130
   }
131
 
132
   return ht;
133
}
134
 
135
/**
136
 * Frees the given set.
137
 *
138
 * If delete_function is passed, it gets called on each entry present before
139
 * freeing.
140
 */
141
void
142
_mesa_set_destroy(struct set *ht, void (*delete_function)(struct set_entry *entry))
143
{
144
   if (!ht)
145
      return;
146
 
147
   if (delete_function) {
148
      struct set_entry *entry;
149
 
150
      set_foreach (ht, entry) {
151
         delete_function(entry);
152
      }
153
   }
154
   ralloc_free(ht->table);
155
   ralloc_free(ht);
156
}
157
 
158
/**
159
 * Finds a set entry with the given key and hash of that key.
160
 *
161
 * Returns NULL if no entry is found.
162
 */
163
static struct set_entry *
164
set_search(const struct set *ht, uint32_t hash, const void *key)
165
{
166
   uint32_t hash_address;
167
 
168
   hash_address = hash % ht->size;
169
   do {
170
      uint32_t double_hash;
171
 
172
      struct set_entry *entry = ht->table + hash_address;
173
 
174
      if (entry_is_free(entry)) {
175
         return NULL;
176
      } else if (entry_is_present(entry) && entry->hash == hash) {
177
         if (ht->key_equals_function(key, entry->key)) {
178
            return entry;
179
         }
180
      }
181
 
182
      double_hash = 1 + hash % ht->rehash;
183
 
184
      hash_address = (hash_address + double_hash) % ht->size;
185
   } while (hash_address != hash % ht->size);
186
 
187
   return NULL;
188
}
189
 
190
struct set_entry *
191
_mesa_set_search(const struct set *set, const void *key)
192
{
193
   assert(set->key_hash_function);
194
   return set_search(set, set->key_hash_function(key), key);
195
}
196
 
197
struct set_entry *
198
_mesa_set_search_pre_hashed(const struct set *set, uint32_t hash,
199
                            const void *key)
200
{
201
   assert(set->key_hash_function == NULL ||
202
          hash == set->key_hash_function(key));
203
   return set_search(set, hash, key);
204
}
205
 
206
static struct set_entry *
207
set_add(struct set *ht, uint32_t hash, const void *key);
208
 
209
static void
210
set_rehash(struct set *ht, unsigned new_size_index)
211
{
212
   struct set old_ht;
213
   struct set_entry *table, *entry;
214
 
215
   if (new_size_index >= ARRAY_SIZE(hash_sizes))
216
      return;
217
 
218
   table = rzalloc_array(ht, struct set_entry,
219
                         hash_sizes[new_size_index].size);
220
   if (table == NULL)
221
      return;
222
 
223
   old_ht = *ht;
224
 
225
   ht->table = table;
226
   ht->size_index = new_size_index;
227
   ht->size = hash_sizes[ht->size_index].size;
228
   ht->rehash = hash_sizes[ht->size_index].rehash;
229
   ht->max_entries = hash_sizes[ht->size_index].max_entries;
230
   ht->entries = 0;
231
   ht->deleted_entries = 0;
232
 
233
   for (entry = old_ht.table;
234
        entry != old_ht.table + old_ht.size;
235
        entry++) {
236
      if (entry_is_present(entry)) {
237
         set_add(ht, entry->hash, entry->key);
238
      }
239
   }
240
 
241
   ralloc_free(old_ht.table);
242
}
243
 
244
/**
245
 * Inserts the key with the given hash into the table.
246
 *
247
 * Note that insertion may rearrange the table on a resize or rehash,
248
 * so previously found hash_entries are no longer valid after this function.
249
 */
250
static struct set_entry *
251
set_add(struct set *ht, uint32_t hash, const void *key)
252
{
253
   uint32_t hash_address;
254
   struct set_entry *available_entry = NULL;
255
 
256
   if (ht->entries >= ht->max_entries) {
257
      set_rehash(ht, ht->size_index + 1);
258
   } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
259
      set_rehash(ht, ht->size_index);
260
   }
261
 
262
   hash_address = hash % ht->size;
263
   do {
264
      struct set_entry *entry = ht->table + hash_address;
265
      uint32_t double_hash;
266
 
267
      if (!entry_is_present(entry)) {
268
         /* Stash the first available entry we find */
269
         if (available_entry == NULL)
270
            available_entry = entry;
271
         if (entry_is_free(entry))
272
            break;
273
      }
274
 
275
      /* Implement replacement when another insert happens
276
       * with a matching key.  This is a relatively common
277
       * feature of hash tables, with the alternative
278
       * generally being "insert the new value as well, and
279
       * return it first when the key is searched for".
280
       *
281
       * Note that the hash table doesn't have a delete callback.
282
       * If freeing of old keys is required to avoid memory leaks,
283
       * perform a search before inserting.
284
       */
285
      if (entry->hash == hash &&
286
          ht->key_equals_function(key, entry->key)) {
287
         entry->key = key;
288
         return entry;
289
      }
290
 
291
      double_hash = 1 + hash % ht->rehash;
292
 
293
      hash_address = (hash_address + double_hash) % ht->size;
294
   } while (hash_address != hash % ht->size);
295
 
296
   if (available_entry) {
297
      if (entry_is_deleted(available_entry))
298
         ht->deleted_entries--;
299
      available_entry->hash = hash;
300
      available_entry->key = key;
301
      ht->entries++;
302
      return available_entry;
303
   }
304
 
305
   /* We could hit here if a required resize failed. An unchecked-malloc
306
    * application could ignore this result.
307
    */
308
   return NULL;
309
}
310
 
311
struct set_entry *
312
_mesa_set_add(struct set *set, const void *key)
313
{
314
   assert(set->key_hash_function);
315
   return set_add(set, set->key_hash_function(key), key);
316
}
317
 
318
struct set_entry *
319
_mesa_set_add_pre_hashed(struct set *set, uint32_t hash, const void *key)
320
{
321
   assert(set->key_hash_function == NULL ||
322
          hash == set->key_hash_function(key));
323
   return set_add(set, hash, key);
324
}
325
 
326
/**
327
 * This function deletes the given hash table entry.
328
 *
329
 * Note that deletion doesn't otherwise modify the table, so an iteration over
330
 * the table deleting entries is safe.
331
 */
332
void
333
_mesa_set_remove(struct set *ht, struct set_entry *entry)
334
{
335
   if (!entry)
336
      return;
337
 
338
   entry->key = deleted_key;
339
   ht->entries--;
340
   ht->deleted_entries++;
341
}
342
 
343
/**
344
 * This function is an iterator over the hash table.
345
 *
346
 * Pass in NULL for the first entry, as in the start of a for loop.  Note that
347
 * an iteration over the table is O(table_size) not O(entries).
348
 */
349
struct set_entry *
350
_mesa_set_next_entry(const struct set *ht, struct set_entry *entry)
351
{
352
   if (entry == NULL)
353
      entry = ht->table;
354
   else
355
      entry = entry + 1;
356
 
357
   for (; entry != ht->table + ht->size; entry++) {
358
      if (entry_is_present(entry)) {
359
         return entry;
360
      }
361
   }
362
 
363
   return NULL;
364
}
365
 
366
struct set_entry *
367
_mesa_set_random_entry(struct set *ht,
368
                       int (*predicate)(struct set_entry *entry))
369
{
370
   struct set_entry *entry;
371
   uint32_t i = rand() % ht->size;
372
 
373
   if (ht->entries == 0)
374
      return NULL;
375
 
376
   for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
377
      if (entry_is_present(entry) &&
378
          (!predicate || predicate(entry))) {
379
         return entry;
380
      }
381
   }
382
 
383
   for (entry = ht->table; entry != ht->table + i; entry++) {
384
      if (entry_is_present(entry) &&
385
          (!predicate || predicate(entry))) {
386
         return entry;
387
      }
388
   }
389
 
390
   return NULL;
391
}