Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5564 serge 1
/*
2
 * Copyright © 2009,2012 Intel Corporation
3
 * Copyright © 1988-2004 Keith Packard and Bart Massey.
4
 *
5
 * Permission is hereby granted, free of charge, to any person obtaining a
6
 * copy of this software and associated documentation files (the "Software"),
7
 * to deal in the Software without restriction, including without limitation
8
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
 * and/or sell copies of the Software, and to permit persons to whom the
10
 * Software is furnished to do so, subject to the following conditions:
11
 *
12
 * The above copyright notice and this permission notice (including the next
13
 * paragraph) shall be included in all copies or substantial portions of the
14
 * Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22
 * IN THE SOFTWARE.
23
 *
24
 * Except as contained in this notice, the names of the authors
25
 * or their institutions shall not be used in advertising or
26
 * otherwise to promote the sale, use or other dealings in this
27
 * Software without prior written authorization from the
28
 * authors.
29
 *
30
 * Authors:
31
 *    Eric Anholt 
32
 *    Keith Packard 
33
 */
34
 
35
/**
36
 * Implements an open-addressing, linear-reprobing hash table.
37
 *
38
 * For more information, see:
39
 *
40
 * http://cgit.freedesktop.org/~anholt/hash_table/tree/README
41
 */
42
 
43
#include 
44
#include 
45
#include 
46
 
47
#include "hash_table.h"
48
#include "ralloc.h"
49
#include "macros.h"
50
 
51
static const uint32_t deleted_key_value;
52
 
53
/**
54
 * From Knuth -- a good choice for hash/rehash values is p, p-2 where
55
 * p and p-2 are both prime.  These tables are sized to have an extra 10%
56
 * free to avoid exponential performance degradation as the hash table fills
57
 */
58
static const struct {
59
   uint32_t max_entries, size, rehash;
60
} hash_sizes[] = {
61
   { 2,			5,		3	  },
62
   { 4,			7,		5	  },
63
   { 8,			13,		11	  },
64
   { 16,		19,		17	  },
65
   { 32,		43,		41        },
66
   { 64,		73,		71        },
67
   { 128,		151,		149       },
68
   { 256,		283,		281       },
69
   { 512,		571,		569       },
70
   { 1024,		1153,		1151      },
71
   { 2048,		2269,		2267      },
72
   { 4096,		4519,		4517      },
73
   { 8192,		9013,		9011      },
74
   { 16384,		18043,		18041     },
75
   { 32768,		36109,		36107     },
76
   { 65536,		72091,		72089     },
77
   { 131072,		144409,		144407    },
78
   { 262144,		288361,		288359    },
79
   { 524288,		576883,		576881    },
80
   { 1048576,		1153459,	1153457   },
81
   { 2097152,		2307163,	2307161   },
82
   { 4194304,		4613893,	4613891   },
83
   { 8388608,		9227641,	9227639   },
84
   { 16777216,		18455029,	18455027  },
85
   { 33554432,		36911011,	36911009  },
86
   { 67108864,		73819861,	73819859  },
87
   { 134217728,		147639589,	147639587 },
88
   { 268435456,		295279081,	295279079 },
89
   { 536870912,		590559793,	590559791 },
90
   { 1073741824,	1181116273,	1181116271},
91
   { 2147483648ul,	2362232233ul,	2362232231ul}
92
};
93
 
94
static int
95
entry_is_free(const struct hash_entry *entry)
96
{
97
   return entry->key == NULL;
98
}
99
 
100
static int
101
entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
102
{
103
   return entry->key == ht->deleted_key;
104
}
105
 
106
static int
107
entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
108
{
109
   return entry->key != NULL && entry->key != ht->deleted_key;
110
}
111
 
112
struct hash_table *
113
_mesa_hash_table_create(void *mem_ctx,
114
                        uint32_t (*key_hash_function)(const void *key),
115
                        bool (*key_equals_function)(const void *a,
116
                                                    const void *b))
117
{
118
   struct hash_table *ht;
119
 
120
   ht = ralloc(mem_ctx, struct hash_table);
121
   if (ht == NULL)
122
      return NULL;
123
 
124
   ht->size_index = 0;
125
   ht->size = hash_sizes[ht->size_index].size;
126
   ht->rehash = hash_sizes[ht->size_index].rehash;
127
   ht->max_entries = hash_sizes[ht->size_index].max_entries;
128
   ht->key_hash_function = key_hash_function;
129
   ht->key_equals_function = key_equals_function;
130
   ht->table = rzalloc_array(ht, struct hash_entry, ht->size);
131
   ht->entries = 0;
132
   ht->deleted_entries = 0;
133
   ht->deleted_key = &deleted_key_value;
134
 
135
   if (ht->table == NULL) {
136
      ralloc_free(ht);
137
      return NULL;
138
   }
139
 
140
   return ht;
141
}
142
 
143
/**
144
 * Frees the given hash table.
145
 *
146
 * If delete_function is passed, it gets called on each entry present before
147
 * freeing.
148
 */
149
void
150
_mesa_hash_table_destroy(struct hash_table *ht,
151
                         void (*delete_function)(struct hash_entry *entry))
152
{
153
   if (!ht)
154
      return;
155
 
156
   if (delete_function) {
157
      struct hash_entry *entry;
158
 
159
      hash_table_foreach(ht, entry) {
160
         delete_function(entry);
161
      }
162
   }
163
   ralloc_free(ht);
164
}
165
 
166
/** Sets the value of the key pointer used for deleted entries in the table.
167
 *
168
 * The assumption is that usually keys are actual pointers, so we use a
169
 * default value of a pointer to an arbitrary piece of storage in the library.
170
 * But in some cases a consumer wants to store some other sort of value in the
171
 * table, like a uint32_t, in which case that pointer may conflict with one of
172
 * their valid keys.  This lets that user select a safe value.
173
 *
174
 * This must be called before any keys are actually deleted from the table.
175
 */
176
void
177
_mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
178
{
179
   ht->deleted_key = deleted_key;
180
}
181
 
182
static struct hash_entry *
183
hash_table_search(struct hash_table *ht, uint32_t hash, const void *key)
184
{
185
   uint32_t start_hash_address = hash % ht->size;
186
   uint32_t hash_address = start_hash_address;
187
 
188
   do {
189
      uint32_t double_hash;
190
 
191
      struct hash_entry *entry = ht->table + hash_address;
192
 
193
      if (entry_is_free(entry)) {
194
         return NULL;
195
      } else if (entry_is_present(ht, entry) && entry->hash == hash) {
196
         if (ht->key_equals_function(key, entry->key)) {
197
            return entry;
198
         }
199
      }
200
 
201
      double_hash = 1 + hash % ht->rehash;
202
 
203
      hash_address = (hash_address + double_hash) % ht->size;
204
   } while (hash_address != start_hash_address);
205
 
206
   return NULL;
207
}
208
 
209
/**
210
 * Finds a hash table entry with the given key and hash of that key.
211
 *
212
 * Returns NULL if no entry is found.  Note that the data pointer may be
213
 * modified by the user.
214
 */
215
struct hash_entry *
216
_mesa_hash_table_search(struct hash_table *ht, const void *key)
217
{
218
   assert(ht->key_hash_function);
219
   return hash_table_search(ht, ht->key_hash_function(key), key);
220
}
221
 
222
struct hash_entry *
223
_mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash,
224
                                  const void *key)
225
{
226
   assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
227
   return hash_table_search(ht, hash, key);
228
}
229
 
230
static struct hash_entry *
231
hash_table_insert(struct hash_table *ht, uint32_t hash,
232
                  const void *key, void *data);
233
 
234
static void
235
_mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index)
236
{
237
   struct hash_table old_ht;
238
   struct hash_entry *table, *entry;
239
 
240
   if (new_size_index >= ARRAY_SIZE(hash_sizes))
241
      return;
242
 
243
   table = rzalloc_array(ht, struct hash_entry,
244
                         hash_sizes[new_size_index].size);
245
   if (table == NULL)
246
      return;
247
 
248
   old_ht = *ht;
249
 
250
   ht->table = table;
251
   ht->size_index = new_size_index;
252
   ht->size = hash_sizes[ht->size_index].size;
253
   ht->rehash = hash_sizes[ht->size_index].rehash;
254
   ht->max_entries = hash_sizes[ht->size_index].max_entries;
255
   ht->entries = 0;
256
   ht->deleted_entries = 0;
257
 
258
   hash_table_foreach(&old_ht, entry) {
259
      hash_table_insert(ht, entry->hash, entry->key, entry->data);
260
   }
261
 
262
   ralloc_free(old_ht.table);
263
}
264
 
265
static struct hash_entry *
266
hash_table_insert(struct hash_table *ht, uint32_t hash,
267
                  const void *key, void *data)
268
{
269
   uint32_t start_hash_address, hash_address;
270
   struct hash_entry *available_entry = NULL;
271
 
272
   if (ht->entries >= ht->max_entries) {
273
      _mesa_hash_table_rehash(ht, ht->size_index + 1);
274
   } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
275
      _mesa_hash_table_rehash(ht, ht->size_index);
276
   }
277
 
278
   start_hash_address = hash % ht->size;
279
   hash_address = start_hash_address;
280
   do {
281
      struct hash_entry *entry = ht->table + hash_address;
282
      uint32_t double_hash;
283
 
284
      if (!entry_is_present(ht, entry)) {
285
         /* Stash the first available entry we find */
286
         if (available_entry == NULL)
287
            available_entry = entry;
288
         if (entry_is_free(entry))
289
            break;
290
      }
291
 
292
      /* Implement replacement when another insert happens
293
       * with a matching key.  This is a relatively common
294
       * feature of hash tables, with the alternative
295
       * generally being "insert the new value as well, and
296
       * return it first when the key is searched for".
297
       *
298
       * Note that the hash table doesn't have a delete
299
       * callback.  If freeing of old data pointers is
300
       * required to avoid memory leaks, perform a search
301
       * before inserting.
302
       */
303
      if (entry->hash == hash &&
304
          ht->key_equals_function(key, entry->key)) {
305
         entry->key = key;
306
         entry->data = data;
307
         return entry;
308
      }
309
 
310
 
311
      double_hash = 1 + hash % ht->rehash;
312
 
313
      hash_address = (hash_address + double_hash) % ht->size;
314
   } while (hash_address != start_hash_address);
315
 
316
   if (available_entry) {
317
      if (entry_is_deleted(ht, available_entry))
318
         ht->deleted_entries--;
319
      available_entry->hash = hash;
320
      available_entry->key = key;
321
      available_entry->data = data;
322
      ht->entries++;
323
      return available_entry;
324
   }
325
 
326
   /* We could hit here if a required resize failed. An unchecked-malloc
327
    * application could ignore this result.
328
    */
329
   return NULL;
330
}
331
 
332
/**
333
 * Inserts the key with the given hash into the table.
334
 *
335
 * Note that insertion may rearrange the table on a resize or rehash,
336
 * so previously found hash_entries are no longer valid after this function.
337
 */
338
struct hash_entry *
339
_mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data)
340
{
341
   assert(ht->key_hash_function);
342
   return hash_table_insert(ht, ht->key_hash_function(key), key, data);
343
}
344
 
345
struct hash_entry *
346
_mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash,
347
                                   const void *key, void *data)
348
{
349
   assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
350
   return hash_table_insert(ht, hash, key, data);
351
}
352
 
353
/**
354
 * This function deletes the given hash table entry.
355
 *
356
 * Note that deletion doesn't otherwise modify the table, so an iteration over
357
 * the table deleting entries is safe.
358
 */
359
void
360
_mesa_hash_table_remove(struct hash_table *ht,
361
                        struct hash_entry *entry)
362
{
363
   if (!entry)
364
      return;
365
 
366
   entry->key = ht->deleted_key;
367
   ht->entries--;
368
   ht->deleted_entries++;
369
}
370
 
371
/**
372
 * This function is an iterator over the hash table.
373
 *
374
 * Pass in NULL for the first entry, as in the start of a for loop.  Note that
375
 * an iteration over the table is O(table_size) not O(entries).
376
 */
377
struct hash_entry *
378
_mesa_hash_table_next_entry(struct hash_table *ht,
379
                            struct hash_entry *entry)
380
{
381
   if (entry == NULL)
382
      entry = ht->table;
383
   else
384
      entry = entry + 1;
385
 
386
   for (; entry != ht->table + ht->size; entry++) {
387
      if (entry_is_present(ht, entry)) {
388
         return entry;
389
      }
390
   }
391
 
392
   return NULL;
393
}
394
 
395
/**
396
 * Returns a random entry from the hash table.
397
 *
398
 * This may be useful in implementing random replacement (as opposed
399
 * to just removing everything) in caches based on this hash table
400
 * implementation.  @predicate may be used to filter entries, or may
401
 * be set to NULL for no filtering.
402
 */
403
struct hash_entry *
404
_mesa_hash_table_random_entry(struct hash_table *ht,
405
                              bool (*predicate)(struct hash_entry *entry))
406
{
407
   struct hash_entry *entry;
408
   uint32_t i = rand() % ht->size;
409
 
410
   if (ht->entries == 0)
411
      return NULL;
412
 
413
   for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
414
      if (entry_is_present(ht, entry) &&
415
          (!predicate || predicate(entry))) {
416
         return entry;
417
      }
418
   }
419
 
420
   for (entry = ht->table; entry != ht->table + i; entry++) {
421
      if (entry_is_present(ht, entry) &&
422
          (!predicate || predicate(entry))) {
423
         return entry;
424
      }
425
   }
426
 
427
   return NULL;
428
}
429
 
430
 
431
/**
432
 * Quick FNV-1a hash implementation based on:
433
 * http://www.isthe.com/chongo/tech/comp/fnv/
434
 *
435
 * FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed
436
 * to be quite good, and it probably beats FNV.  But FNV has the advantage
437
 * that it involves almost no code.  For an improvement on both, see Paul
438
 * Hsieh's http://www.azillionmonkeys.com/qed/hash.html
439
 */
440
uint32_t
441
_mesa_hash_data(const void *data, size_t size)
442
{
443
   return _mesa_fnv32_1a_accumulate_block(_mesa_fnv32_1a_offset_bias,
444
                                          data, size);
445
}
446
 
447
/** FNV-1a string hash implementation */
448
uint32_t
449
_mesa_hash_string(const char *key)
450
{
451
   uint32_t hash = _mesa_fnv32_1a_offset_bias;
452
 
453
   while (*key != 0) {
454
      hash = _mesa_fnv32_1a_accumulate(hash, *key);
455
      key++;
456
   }
457
 
458
   return hash;
459
}
460
 
461
/**
462
 * String compare function for use as the comparison callback in
463
 * _mesa_hash_table_create().
464
 */
465
bool
466
_mesa_key_string_equal(const void *a, const void *b)
467
{
468
   return strcmp(a, b) == 0;
469
}
470
 
471
bool
472
_mesa_key_pointer_equal(const void *a, const void *b)
473
{
474
   return a == b;
475
}