Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5564 serge 1
/*
2
 * Mesa 3-D graphics library
3
 *
4
 * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a
7
 * copy of this software and associated documentation files (the "Software"),
8
 * to deal in the Software without restriction, including without limitation
9
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10
 * and/or sell copies of the Software, and to permit persons to whom the
11
 * Software is furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included
14
 * in all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22
 * OTHER DEALINGS IN THE SOFTWARE.
23
 */
24
 
25
 
26
/**
27
 * \file imports.h
28
 * Standard C library function wrappers.
29
 *
30
 * This file provides wrappers for all the standard C library functions
31
 * like malloc(), free(), printf(), getenv(), etc.
32
 */
33
 
34
 
35
#ifndef IMPORTS_H
36
#define IMPORTS_H
37
 
38
 
39
#include 
40
#include 
41
#include 
42
#include "compiler.h"
43
#include "glheader.h"
44
#include "errors.h"
45
 
46
#ifdef __cplusplus
47
extern "C" {
48
#endif
49
 
50
 
51
/**********************************************************************/
52
/** Memory macros */
53
/*@{*/
54
 
55
/** Allocate a structure of type \p T */
56
#define MALLOC_STRUCT(T)   (struct T *) malloc(sizeof(struct T))
57
/** Allocate and zero a structure of type \p T */
58
#define CALLOC_STRUCT(T)   (struct T *) calloc(1, sizeof(struct T))
59
 
60
/*@}*/
61
 
62
 
63
/*
64
 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
65
 * as offsets into buffer stores.  Since the vertex array pointer and
66
 * buffer store pointer are both pointers and we need to add them, we use
67
 * this macro.
68
 * Both pointers/offsets are expressed in bytes.
69
 */
70
#define ADD_POINTERS(A, B)  ( (GLubyte *) (A) + (uintptr_t) (B) )
71
 
72
 
73
/**
74
 * Sometimes we treat GLfloats as GLints.  On x86 systems, moving a float
75
 * as a int (thereby using integer registers instead of FP registers) is
76
 * a performance win.  Typically, this can be done with ordinary casts.
77
 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
78
 * these casts generate warnings.
79
 * The following union typedef is used to solve that.
80
 */
81
typedef union { GLfloat f; GLint i; GLuint u; } fi_type;
82
 
83
 
84
 
85
#if defined(_MSC_VER)
86
#if _MSC_VER < 1800  /* Not req'd on VS2013 and above */
87
#define strtoll(p, e, b) _strtoi64(p, e, b)
88
#endif /* _MSC_VER < 1800 */
89
#define strcasecmp(s1, s2) _stricmp(s1, s2)
90
#endif
91
/*@}*/
92
 
93
 
94
/***
95
 *** LOG2: Log base 2 of float
96
 ***/
97
static inline GLfloat LOG2(GLfloat x)
98
{
99
#if 0
100
   /* This is pretty fast, but not accurate enough (only 2 fractional bits).
101
    * Based on code from http://www.stereopsis.com/log2.html
102
    */
103
   const GLfloat y = x * x * x * x;
104
   const GLuint ix = *((GLuint *) &y);
105
   const GLuint exp = (ix >> 23) & 0xFF;
106
   const GLint log2 = ((GLint) exp) - 127;
107
   return (GLfloat) log2 * (1.0 / 4.0);  /* 4, because of x^4 above */
108
#endif
109
   /* Pretty fast, and accurate.
110
    * Based on code from http://www.flipcode.com/totd/
111
    */
112
   fi_type num;
113
   GLint log_2;
114
   num.f = x;
115
   log_2 = ((num.i >> 23) & 255) - 128;
116
   num.i &= ~(255 << 23);
117
   num.i += 127 << 23;
118
   num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
119
   return num.f + log_2;
120
}
121
 
122
 
123
 
124
/**
125
 * finite macro.
126
 */
127
#if defined(_MSC_VER)
128
#  define finite _finite
129
#endif
130
 
131
 
132
/***
133
 *** IS_INF_OR_NAN: test if float is infinite or NaN
134
 ***/
135
#if defined(isfinite)
136
#define IS_INF_OR_NAN(x)        (!isfinite(x))
137
#elif defined(finite)
138
#define IS_INF_OR_NAN(x)        (!finite(x))
139
#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
140
#define IS_INF_OR_NAN(x)        (!isfinite(x))
141
#else
142
#define IS_INF_OR_NAN(x)        (!finite(x))
143
#endif
144
 
145
 
146
/**
147
 * Convert float to int by rounding to nearest integer, away from zero.
148
 */
149
static inline int IROUND(float f)
150
{
151
   return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
152
}
153
 
154
 
155
/**
156
 * Convert float to int64 by rounding to nearest integer.
157
 */
158
static inline GLint64 IROUND64(float f)
159
{
160
   return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
161
}
162
 
163
 
164
/**
165
 * Convert positive float to int by rounding to nearest integer.
166
 */
167
static inline int IROUND_POS(float f)
168
{
169
   assert(f >= 0.0F);
170
   return (int) (f + 0.5F);
171
}
172
 
173
#ifdef __x86_64__
174
#  include 
175
#endif
176
 
177
/**
178
 * Convert float to int using a fast method.  The rounding mode may vary.
179
 */
180
static inline int F_TO_I(float f)
181
{
182
#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
183
   int r;
184
   __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
185
   return r;
186
#elif defined(USE_X86_ASM) && defined(_MSC_VER)
187
   int r;
188
   _asm {
189
	 fld f
190
	 fistp r
191
	}
192
   return r;
193
#elif defined(__x86_64__)
194
   return _mm_cvt_ss2si(_mm_load_ss(&f));
195
#else
196
   return IROUND(f);
197
#endif
198
}
199
 
200
 
201
/** Return (as an integer) floor of float */
202
static inline int IFLOOR(float f)
203
{
204
#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
205
   /*
206
    * IEEE floor for computers that round to nearest or even.
207
    * 'f' must be between -4194304 and 4194303.
208
    * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
209
    * but uses some IEEE specific tricks for better speed.
210
    * Contributed by Josh Vanderhoof
211
    */
212
   int ai, bi;
213
   double af, bf;
214
   af = (3 << 22) + 0.5 + (double)f;
215
   bf = (3 << 22) + 0.5 - (double)f;
216
   /* GCC generates an extra fstp/fld without this. */
217
   __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
218
   __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
219
   return (ai - bi) >> 1;
220
#else
221
   int ai, bi;
222
   double af, bf;
223
   fi_type u;
224
   af = (3 << 22) + 0.5 + (double)f;
225
   bf = (3 << 22) + 0.5 - (double)f;
226
   u.f = (float) af;  ai = u.i;
227
   u.f = (float) bf;  bi = u.i;
228
   return (ai - bi) >> 1;
229
#endif
230
}
231
 
232
 
233
/** Return (as an integer) ceiling of float */
234
static inline int ICEIL(float f)
235
{
236
#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
237
   /*
238
    * IEEE ceil for computers that round to nearest or even.
239
    * 'f' must be between -4194304 and 4194303.
240
    * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
241
    * but uses some IEEE specific tricks for better speed.
242
    * Contributed by Josh Vanderhoof
243
    */
244
   int ai, bi;
245
   double af, bf;
246
   af = (3 << 22) + 0.5 + (double)f;
247
   bf = (3 << 22) + 0.5 - (double)f;
248
   /* GCC generates an extra fstp/fld without this. */
249
   __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
250
   __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
251
   return (ai - bi + 1) >> 1;
252
#else
253
   int ai, bi;
254
   double af, bf;
255
   fi_type u;
256
   af = (3 << 22) + 0.5 + (double)f;
257
   bf = (3 << 22) + 0.5 - (double)f;
258
   u.f = (float) af; ai = u.i;
259
   u.f = (float) bf; bi = u.i;
260
   return (ai - bi + 1) >> 1;
261
#endif
262
}
263
 
264
 
265
/**
266
 * Is x a power of two?
267
 */
268
static inline int
269
_mesa_is_pow_two(int x)
270
{
271
   return !(x & (x - 1));
272
}
273
 
274
/**
275
 * Round given integer to next higer power of two
276
 * If X is zero result is undefined.
277
 *
278
 * Source for the fallback implementation is
279
 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
280
 * http://graphics.stanford.edu/~seander/bithacks.html
281
 *
282
 * When using builtin function have to do some work
283
 * for case when passed values 1 to prevent hiting
284
 * undefined result from __builtin_clz. Undefined
285
 * results would be different depending on optimization
286
 * level used for build.
287
 */
288
static inline int32_t
289
_mesa_next_pow_two_32(uint32_t x)
290
{
291
#ifdef HAVE___BUILTIN_CLZ
292
	uint32_t y = (x != 1);
293
	return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
294
#else
295
	x--;
296
	x |= x >> 1;
297
	x |= x >> 2;
298
	x |= x >> 4;
299
	x |= x >> 8;
300
	x |= x >> 16;
301
	x++;
302
	return x;
303
#endif
304
}
305
 
306
static inline int64_t
307
_mesa_next_pow_two_64(uint64_t x)
308
{
309
#ifdef HAVE___BUILTIN_CLZLL
310
	uint64_t y = (x != 1);
311
	STATIC_ASSERT(sizeof(x) == sizeof(long long));
312
	return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
313
#else
314
	x--;
315
	x |= x >> 1;
316
	x |= x >> 2;
317
	x |= x >> 4;
318
	x |= x >> 8;
319
	x |= x >> 16;
320
	x |= x >> 32;
321
	x++;
322
	return x;
323
#endif
324
}
325
 
326
 
327
/*
328
 * Returns the floor form of binary logarithm for a 32-bit integer.
329
 */
330
static inline GLuint
331
_mesa_logbase2(GLuint n)
332
{
333
#ifdef HAVE___BUILTIN_CLZ
334
   return (31 - __builtin_clz(n | 1));
335
#else
336
   GLuint pos = 0;
337
   if (n >= 1<<16) { n >>= 16; pos += 16; }
338
   if (n >= 1<< 8) { n >>=  8; pos +=  8; }
339
   if (n >= 1<< 4) { n >>=  4; pos +=  4; }
340
   if (n >= 1<< 2) { n >>=  2; pos +=  2; }
341
   if (n >= 1<< 1) {           pos +=  1; }
342
   return pos;
343
#endif
344
}
345
 
346
 
347
/**
348
 * Return 1 if this is a little endian machine, 0 if big endian.
349
 */
350
static inline GLboolean
351
_mesa_little_endian(void)
352
{
353
   const GLuint ui = 1; /* intentionally not static */
354
   return *((const GLubyte *) &ui);
355
}
356
 
357
 
358
 
359
/**********************************************************************
360
 * Functions
361
 */
362
 
363
extern void *
364
_mesa_align_malloc( size_t bytes, unsigned long alignment );
365
 
366
extern void *
367
_mesa_align_calloc( size_t bytes, unsigned long alignment );
368
 
369
extern void
370
_mesa_align_free( void *ptr );
371
 
372
extern void *
373
_mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
374
                    unsigned long alignment);
375
 
376
extern void *
377
_mesa_exec_malloc( GLuint size );
378
 
379
extern void
380
_mesa_exec_free( void *addr );
381
 
382
 
383
#ifndef FFS_DEFINED
384
#define FFS_DEFINED 1
385
#ifdef HAVE___BUILTIN_FFS
386
#define ffs __builtin_ffs
387
#else
388
extern int ffs(int i);
389
#endif
390
 
391
#ifdef HAVE___BUILTIN_FFSLL
392
#define ffsll __builtin_ffsll
393
#else
394
extern int ffsll(long long int i);
395
#endif
396
#endif /* FFS_DEFINED */
397
 
398
 
399
#ifdef HAVE___BUILTIN_POPCOUNT
400
#define _mesa_bitcount(i) __builtin_popcount(i)
401
#else
402
extern unsigned int
403
_mesa_bitcount(unsigned int n);
404
#endif
405
 
406
#ifdef HAVE___BUILTIN_POPCOUNTLL
407
#define _mesa_bitcount_64(i) __builtin_popcountll(i)
408
#else
409
extern unsigned int
410
_mesa_bitcount_64(uint64_t n);
411
#endif
412
 
413
/**
414
 * Find the last (most significant) bit set in a word.
415
 *
416
 * Essentially ffs() in the reverse direction.
417
 */
418
static inline unsigned int
419
_mesa_fls(unsigned int n)
420
{
421
#ifdef HAVE___BUILTIN_CLZ
422
   return n == 0 ? 0 : 32 - __builtin_clz(n);
423
#else
424
   unsigned int v = 1;
425
 
426
   if (n == 0)
427
      return 0;
428
 
429
   while (n >>= 1)
430
       v++;
431
 
432
   return v;
433
#endif
434
}
435
 
436
/**
437
 * Find the last (most significant) bit set in a uint64_t value.
438
 *
439
 * Essentially ffsll() in the reverse direction.
440
 */
441
static inline unsigned int
442
_mesa_flsll(uint64_t n)
443
{
444
#ifdef HAVE___BUILTIN_CLZLL
445
   return n == 0 ? 0 : 64 - __builtin_clzll(n);
446
#else
447
   unsigned int v = 1;
448
 
449
   if (n == 0)
450
      return 0;
451
 
452
   while (n >>= 1)
453
       v++;
454
 
455
   return v;
456
#endif
457
}
458
 
459
 
460
extern GLhalfARB
461
_mesa_float_to_half(float f);
462
 
463
extern float
464
_mesa_half_to_float(GLhalfARB h);
465
 
466
static inline bool
467
_mesa_half_is_negative(GLhalfARB h)
468
{
469
   return h & 0x8000;
470
}
471
 
472
extern unsigned int
473
_mesa_str_checksum(const char *str);
474
 
475
extern int
476
_mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4);
477
 
478
extern int
479
_mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg);
480
 
481
 
482
#if defined(_MSC_VER) && !defined(snprintf)
483
#define snprintf _snprintf
484
#endif
485
 
486
 
487
#ifdef __cplusplus
488
}
489
#endif
490
 
491
 
492
#endif /* IMPORTS_H */