Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5564 serge 1
/*
2
 * Copyright © 2010 Luca Barbieri
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
 * DEALINGS IN THE SOFTWARE.
22
 */
23
 
24
/**
25
 * \file lower_jumps.cpp
26
 *
27
 * This pass lowers jumps (break, continue, and return) to if/else structures.
28
 *
29
 * It can be asked to:
30
 * 1. Pull jumps out of ifs where possible
31
 * 2. Remove all "continue"s, replacing them with an "execute flag"
32
 * 3. Replace all "break" with a single conditional one at the end of the loop
33
 * 4. Replace all "return"s with a single return at the end of the function,
34
 *    for the main function and/or other functions
35
 *
36
 * Applying this pass gives several benefits:
37
 * 1. All functions can be inlined.
38
 * 2. nv40 and other pre-DX10 chips without "continue" can be supported
39
 * 3. nv30 and other pre-DX10 chips with no control flow at all are better
40
 *    supported
41
 *
42
 * Continues are lowered by adding a per-loop "execute flag", initialized to
43
 * true, that when cleared inhibits all execution until the end of the loop.
44
 *
45
 * Breaks are lowered to continues, plus setting a "break flag" that is checked
46
 * at the end of the loop, and trigger the unique "break".
47
 *
48
 * Returns are lowered to breaks/continues, plus adding a "return flag" that
49
 * causes loops to break again out of their enclosing loops until all the
50
 * loops are exited: then the "execute flag" logic will ignore everything
51
 * until the end of the function.
52
 *
53
 * Note that "continue" and "return" can also be implemented by adding
54
 * a dummy loop and using break.
55
 * However, this is bad for hardware with limited nesting depth, and
56
 * prevents further optimization, and thus is not currently performed.
57
 */
58
 
59
#include "glsl_types.h"
60
#include 
61
#include "ir.h"
62
 
63
/**
64
 * Enum recording the result of analyzing how control flow might exit
65
 * an IR node.
66
 *
67
 * Each possible value of jump_strength indicates a strictly stronger
68
 * guarantee on control flow than the previous value.
69
 *
70
 * The ordering of strengths roughly reflects the way jumps are
71
 * lowered: jumps with higher strength tend to be lowered to jumps of
72
 * lower strength.  Accordingly, strength is used as a heuristic to
73
 * determine which lowering to perform first.
74
 *
75
 * This enum is also used by get_jump_strength() to categorize
76
 * instructions as either break, continue, return, or other.  When
77
 * used in this fashion, strength_always_clears_execute_flag is not
78
 * used.
79
 *
80
 * The control flow analysis made by this optimization pass makes two
81
 * simplifying assumptions:
82
 *
83
 * - It ignores discard instructions, since they are lowered by a
84
 *   separate pass (lower_discard.cpp).
85
 *
86
 * - It assumes it is always possible for control to flow from a loop
87
 *   to the instruction immediately following it.  Technically, this
88
 *   is not true (since all execution paths through the loop might
89
 *   jump back to the top, or return from the function).
90
 *
91
 * Both of these simplifying assumtions are safe, since they can never
92
 * cause reachable code to be incorrectly classified as unreachable;
93
 * they can only do the opposite.
94
 */
95
enum jump_strength
96
{
97
   /**
98
    * Analysis has produced no guarantee on how control flow might
99
    * exit this IR node.  It might fall out the bottom (with or
100
    * without clearing the execute flag, if present), or it might
101
    * continue to the top of the innermost enclosing loop, break out
102
    * of it, or return from the function.
103
    */
104
   strength_none,
105
 
106
   /**
107
    * The only way control can fall out the bottom of this node is
108
    * through a code path that clears the execute flag.  It might also
109
    * continue to the top of the innermost enclosing loop, break out
110
    * of it, or return from the function.
111
    */
112
   strength_always_clears_execute_flag,
113
 
114
   /**
115
    * Control cannot fall out the bottom of this node.  It might
116
    * continue to the top of the innermost enclosing loop, break out
117
    * of it, or return from the function.
118
    */
119
   strength_continue,
120
 
121
   /**
122
    * Control cannot fall out the bottom of this node, or continue the
123
    * top of the innermost enclosing loop.  It can only break out of
124
    * it or return from the function.
125
    */
126
   strength_break,
127
 
128
   /**
129
    * Control cannot fall out the bottom of this node, continue to the
130
    * top of the innermost enclosing loop, or break out of it.  It can
131
    * only return from the function.
132
    */
133
   strength_return
134
};
135
 
136
namespace {
137
 
138
struct block_record
139
{
140
   /* minimum jump strength (of lowered IR, not pre-lowering IR)
141
    *
142
    * If the block ends with a jump, must be the strength of the jump.
143
    * Otherwise, the jump would be dead and have been deleted before)
144
    *
145
    * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump
146
    * (e.g. an if with a return in one branch, and a break in the other, while not lowering them)
147
    * Note that identical jumps are usually unified though.
148
    */
149
   jump_strength min_strength;
150
 
151
   /* can anything clear the execute flag? */
152
   bool may_clear_execute_flag;
153
 
154
   block_record()
155
   {
156
      this->min_strength = strength_none;
157
      this->may_clear_execute_flag = false;
158
   }
159
};
160
 
161
struct loop_record
162
{
163
   ir_function_signature* signature;
164
   ir_loop* loop;
165
 
166
   /* used to avoid lowering the break used to represent lowered breaks */
167
   unsigned nesting_depth;
168
   bool in_if_at_the_end_of_the_loop;
169
 
170
   bool may_set_return_flag;
171
 
172
   ir_variable* break_flag;
173
   ir_variable* execute_flag; /* cleared to emulate continue */
174
 
175
   loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0)
176
   {
177
      this->signature = p_signature;
178
      this->loop = p_loop;
179
      this->nesting_depth = 0;
180
      this->in_if_at_the_end_of_the_loop = false;
181
      this->may_set_return_flag = false;
182
      this->break_flag = 0;
183
      this->execute_flag = 0;
184
   }
185
 
186
   ir_variable* get_execute_flag()
187
   {
188
      /* also supported for the "function loop" */
189
      if(!this->execute_flag) {
190
         exec_list& list = this->loop ? this->loop->body_instructions : signature->body;
191
         this->execute_flag = new(this->signature) ir_variable(glsl_type::bool_type, "execute_flag", ir_var_temporary);
192
         list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true), 0));
193
         list.push_head(this->execute_flag);
194
      }
195
      return this->execute_flag;
196
   }
197
 
198
   ir_variable* get_break_flag()
199
   {
200
      assert(this->loop);
201
      if(!this->break_flag) {
202
         this->break_flag = new(this->signature) ir_variable(glsl_type::bool_type, "break_flag", ir_var_temporary);
203
         this->loop->insert_before(this->break_flag);
204
         this->loop->insert_before(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(break_flag), new(this->signature) ir_constant(false), 0));
205
      }
206
      return this->break_flag;
207
   }
208
};
209
 
210
struct function_record
211
{
212
   ir_function_signature* signature;
213
   ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */
214
   ir_variable* return_value;
215
   bool lower_return;
216
   unsigned nesting_depth;
217
 
218
   function_record(ir_function_signature* p_signature = 0,
219
                   bool lower_return = false)
220
   {
221
      this->signature = p_signature;
222
      this->return_flag = 0;
223
      this->return_value = 0;
224
      this->nesting_depth = 0;
225
      this->lower_return = lower_return;
226
   }
227
 
228
   ir_variable* get_return_flag()
229
   {
230
      if(!this->return_flag) {
231
         this->return_flag = new(this->signature) ir_variable(glsl_type::bool_type, "return_flag", ir_var_temporary);
232
         this->signature->body.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(return_flag), new(this->signature) ir_constant(false), 0));
233
         this->signature->body.push_head(this->return_flag);
234
      }
235
      return this->return_flag;
236
   }
237
 
238
   ir_variable* get_return_value()
239
   {
240
      if(!this->return_value) {
241
         assert(!this->signature->return_type->is_void());
242
         return_value = new(this->signature) ir_variable(this->signature->return_type, "return_value", ir_var_temporary);
243
         this->signature->body.push_head(this->return_value);
244
      }
245
      return this->return_value;
246
   }
247
};
248
 
249
struct ir_lower_jumps_visitor : public ir_control_flow_visitor {
250
   /* Postconditions: on exit of any visit() function:
251
    *
252
    * ANALYSIS: this->block.min_strength,
253
    * this->block.may_clear_execute_flag, and
254
    * this->loop.may_set_return_flag are updated to reflect the
255
    * characteristics of the visited statement.
256
    *
257
    * DEAD_CODE_ELIMINATION: If this->block.min_strength is not
258
    * strength_none, the visited node is at the end of its exec_list.
259
    * In other words, any unreachable statements that follow the
260
    * visited statement in its exec_list have been removed.
261
    *
262
    * CONTAINED_JUMPS_LOWERED: If the visited statement contains other
263
    * statements, then should_lower_jump() is false for all of the
264
    * return, break, or continue statements it contains.
265
    *
266
    * Note that visiting a jump does not lower it.  That is the
267
    * responsibility of the statement (or function signature) that
268
    * contains the jump.
269
    */
270
 
271
   bool progress;
272
 
273
   struct function_record function;
274
   struct loop_record loop;
275
   struct block_record block;
276
 
277
   bool pull_out_jumps;
278
   bool lower_continue;
279
   bool lower_break;
280
   bool lower_sub_return;
281
   bool lower_main_return;
282
 
283
   ir_lower_jumps_visitor()
284
      : progress(false),
285
        pull_out_jumps(false),
286
        lower_continue(false),
287
        lower_break(false),
288
        lower_sub_return(false),
289
        lower_main_return(false)
290
   {
291
   }
292
 
293
   void truncate_after_instruction(exec_node *ir)
294
   {
295
      if (!ir)
296
         return;
297
 
298
      while (!ir->get_next()->is_tail_sentinel()) {
299
         ((ir_instruction *)ir->get_next())->remove();
300
         this->progress = true;
301
      }
302
   }
303
 
304
   void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block)
305
   {
306
      while (!ir->get_next()->is_tail_sentinel()) {
307
         ir_instruction *move_ir = (ir_instruction *)ir->get_next();
308
 
309
         move_ir->remove();
310
         inner_block->push_tail(move_ir);
311
      }
312
   }
313
 
314
   /**
315
    * Insert the instructions necessary to lower a return statement,
316
    * before the given return instruction.
317
    */
318
   void insert_lowered_return(ir_return *ir)
319
   {
320
      ir_variable* return_flag = this->function.get_return_flag();
321
      if(!this->function.signature->return_type->is_void()) {
322
         ir_variable* return_value = this->function.get_return_value();
323
         ir->insert_before(
324
            new(ir) ir_assignment(
325
               new (ir) ir_dereference_variable(return_value),
326
               ir->value));
327
      }
328
      ir->insert_before(
329
         new(ir) ir_assignment(
330
            new (ir) ir_dereference_variable(return_flag),
331
            new (ir) ir_constant(true)));
332
      this->loop.may_set_return_flag = true;
333
   }
334
 
335
   /**
336
    * If the given instruction is a return, lower it to instructions
337
    * that store the return value (if there is one), set the return
338
    * flag, and then break.
339
    *
340
    * It is safe to pass NULL to this function.
341
    */
342
   void lower_return_unconditionally(ir_instruction *ir)
343
   {
344
      if (get_jump_strength(ir) != strength_return) {
345
         return;
346
      }
347
      insert_lowered_return((ir_return*)ir);
348
      ir->replace_with(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
349
   }
350
 
351
   /**
352
    * Create the necessary instruction to replace a break instruction.
353
    */
354
   ir_instruction *create_lowered_break()
355
   {
356
      void *ctx = this->function.signature;
357
      return new(ctx) ir_assignment(
358
          new(ctx) ir_dereference_variable(this->loop.get_break_flag()),
359
          new(ctx) ir_constant(true),
360
          0);
361
   }
362
 
363
   /**
364
    * If the given instruction is a break, lower it to an instruction
365
    * that sets the break flag, without consulting
366
    * should_lower_jump().
367
    *
368
    * It is safe to pass NULL to this function.
369
    */
370
   void lower_break_unconditionally(ir_instruction *ir)
371
   {
372
      if (get_jump_strength(ir) != strength_break) {
373
         return;
374
      }
375
      ir->replace_with(create_lowered_break());
376
   }
377
 
378
   /**
379
    * If the block ends in a conditional or unconditional break, lower
380
    * it, even though should_lower_jump() says it needn't be lowered.
381
    */
382
   void lower_final_breaks(exec_list *block)
383
   {
384
      ir_instruction *ir = (ir_instruction *) block->get_tail();
385
      lower_break_unconditionally(ir);
386
      ir_if *ir_if = ir->as_if();
387
      if (ir_if) {
388
          lower_break_unconditionally(
389
              (ir_instruction *) ir_if->then_instructions.get_tail());
390
          lower_break_unconditionally(
391
              (ir_instruction *) ir_if->else_instructions.get_tail());
392
      }
393
   }
394
 
395
   virtual void visit(class ir_loop_jump * ir)
396
   {
397
      /* Eliminate all instructions after each one, since they are
398
       * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
399
       * postcondition.
400
       */
401
      truncate_after_instruction(ir);
402
 
403
      /* Set this->block.min_strength based on this instruction.  This
404
       * satisfies the ANALYSIS postcondition.  It is not necessary to
405
       * update this->block.may_clear_execute_flag or
406
       * this->loop.may_set_return_flag, because an unlowered jump
407
       * instruction can't change any flags.
408
       */
409
      this->block.min_strength = ir->is_break() ? strength_break : strength_continue;
410
 
411
      /* The CONTAINED_JUMPS_LOWERED postcondition is already
412
       * satisfied, because jump statements can't contain other
413
       * statements.
414
       */
415
   }
416
 
417
   virtual void visit(class ir_return * ir)
418
   {
419
      /* Eliminate all instructions after each one, since they are
420
       * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
421
       * postcondition.
422
       */
423
      truncate_after_instruction(ir);
424
 
425
      /* Set this->block.min_strength based on this instruction.  This
426
       * satisfies the ANALYSIS postcondition.  It is not necessary to
427
       * update this->block.may_clear_execute_flag or
428
       * this->loop.may_set_return_flag, because an unlowered return
429
       * instruction can't change any flags.
430
       */
431
      this->block.min_strength = strength_return;
432
 
433
      /* The CONTAINED_JUMPS_LOWERED postcondition is already
434
       * satisfied, because jump statements can't contain other
435
       * statements.
436
       */
437
   }
438
 
439
   virtual void visit(class ir_discard * ir)
440
   {
441
      /* Nothing needs to be done.  The ANALYSIS and
442
       * DEAD_CODE_ELIMINATION postconditions are already satisfied,
443
       * because discard statements are ignored by this optimization
444
       * pass.  The CONTAINED_JUMPS_LOWERED postcondition is already
445
       * satisfied, because discard statements can't contain other
446
       * statements.
447
       */
448
      (void) ir;
449
   }
450
 
451
   enum jump_strength get_jump_strength(ir_instruction* ir)
452
   {
453
      if(!ir)
454
         return strength_none;
455
      else if(ir->ir_type == ir_type_loop_jump) {
456
         if(((ir_loop_jump*)ir)->is_break())
457
            return strength_break;
458
         else
459
            return strength_continue;
460
      } else if(ir->ir_type == ir_type_return)
461
         return strength_return;
462
      else
463
         return strength_none;
464
   }
465
 
466
   bool should_lower_jump(ir_jump* ir)
467
   {
468
      unsigned strength = get_jump_strength(ir);
469
      bool lower;
470
      switch(strength)
471
      {
472
      case strength_none:
473
         lower = false; /* don't change this, code relies on it */
474
         break;
475
      case strength_continue:
476
         lower = lower_continue;
477
         break;
478
      case strength_break:
479
         assert(this->loop.loop);
480
         /* never lower "canonical break" */
481
         if(ir->get_next()->is_tail_sentinel() && (this->loop.nesting_depth == 0
482
               || (this->loop.nesting_depth == 1 && this->loop.in_if_at_the_end_of_the_loop)))
483
            lower = false;
484
         else
485
            lower = lower_break;
486
         break;
487
      case strength_return:
488
         /* never lower return at the end of a this->function */
489
         if(this->function.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
490
            lower = false;
491
         else
492
            lower = this->function.lower_return;
493
         break;
494
      }
495
      return lower;
496
   }
497
 
498
   block_record visit_block(exec_list* list)
499
   {
500
      /* Note: since visiting a node may change that node's next
501
       * pointer, we can't use visit_exec_list(), because
502
       * visit_exec_list() caches the node's next pointer before
503
       * visiting it.  So we use foreach_in_list() instead.
504
       *
505
       * foreach_in_list() isn't safe if the node being visited gets
506
       * removed, but fortunately this visitor doesn't do that.
507
       */
508
 
509
      block_record saved_block = this->block;
510
      this->block = block_record();
511
      foreach_in_list(ir_instruction, node, list) {
512
         node->accept(this);
513
      }
514
      block_record ret = this->block;
515
      this->block = saved_block;
516
      return ret;
517
   }
518
 
519
   virtual void visit(ir_if *ir)
520
   {
521
      if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
522
         this->loop.in_if_at_the_end_of_the_loop = true;
523
 
524
      ++this->function.nesting_depth;
525
      ++this->loop.nesting_depth;
526
 
527
      block_record block_records[2];
528
      ir_jump* jumps[2];
529
 
530
      /* Recursively lower nested jumps.  This satisfies the
531
       * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
532
       * unconditional jumps at the end of ir->then_instructions and
533
       * ir->else_instructions, which are handled below.
534
       */
535
      block_records[0] = visit_block(&ir->then_instructions);
536
      block_records[1] = visit_block(&ir->else_instructions);
537
 
538
retry: /* we get here if we put code after the if inside a branch */
539
 
540
      /* Determine which of ir->then_instructions and
541
       * ir->else_instructions end with an unconditional jump.
542
       */
543
      for(unsigned i = 0; i < 2; ++i) {
544
         exec_list& list = i ? ir->else_instructions : ir->then_instructions;
545
         jumps[i] = 0;
546
         if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail()))
547
            jumps[i] = (ir_jump*)list.get_tail();
548
      }
549
 
550
      /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED
551
       * postcondition by lowering jumps in both then_instructions and
552
       * else_instructions.
553
       */
554
      for(;;) {
555
         /* Determine the types of the jumps that terminate
556
          * ir->then_instructions and ir->else_instructions.
557
          */
558
         jump_strength jump_strengths[2];
559
 
560
         for(unsigned i = 0; i < 2; ++i) {
561
            if(jumps[i]) {
562
               jump_strengths[i] = block_records[i].min_strength;
563
               assert(jump_strengths[i] == get_jump_strength(jumps[i]));
564
            } else
565
               jump_strengths[i] = strength_none;
566
         }
567
 
568
         /* If both code paths end in a jump, and the jumps are the
569
          * same, and we are pulling out jumps, replace them with a
570
          * single jump that comes after the if instruction.  The new
571
          * jump will be visited next, and it will be lowered if
572
          * necessary by the loop or conditional that encloses it.
573
          */
574
         if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) {
575
            bool unify = true;
576
            if(jump_strengths[0] == strength_continue)
577
               ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue));
578
            else if(jump_strengths[0] == strength_break)
579
               ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
580
            /* FINISHME: unify returns with identical expressions */
581
            else if(jump_strengths[0] == strength_return && this->function.signature->return_type->is_void())
582
               ir->insert_after(new(ir) ir_return(NULL));
583
	    else
584
	       unify = false;
585
 
586
            if(unify) {
587
               jumps[0]->remove();
588
               jumps[1]->remove();
589
               this->progress = true;
590
 
591
               /* Update jumps[] to reflect the fact that the jumps
592
                * are gone, and update block_records[] to reflect the
593
                * fact that control can now flow to the next
594
                * instruction.
595
                */
596
               jumps[0] = 0;
597
               jumps[1] = 0;
598
               block_records[0].min_strength = strength_none;
599
               block_records[1].min_strength = strength_none;
600
 
601
               /* The CONTAINED_JUMPS_LOWERED postcondition is now
602
                * satisfied, so we can break out of the loop.
603
                */
604
               break;
605
            }
606
         }
607
 
608
         /* lower a jump: if both need to lowered, start with the strongest one, so that
609
          * we might later unify the lowered version with the other one
610
          */
611
         bool should_lower[2];
612
         for(unsigned i = 0; i < 2; ++i)
613
            should_lower[i] = should_lower_jump(jumps[i]);
614
 
615
         int lower;
616
         if(should_lower[1] && should_lower[0])
617
            lower = jump_strengths[1] > jump_strengths[0];
618
         else if(should_lower[0])
619
            lower = 0;
620
         else if(should_lower[1])
621
            lower = 1;
622
         else
623
            /* Neither code path ends in a jump that needs to be
624
             * lowered, so the CONTAINED_JUMPS_LOWERED postcondition
625
             * is satisfied and we can break out of the loop.
626
             */
627
            break;
628
 
629
         if(jump_strengths[lower] == strength_return) {
630
            /* To lower a return, we create a return flag (if the
631
             * function doesn't have one already) and add instructions
632
             * that: 1. store the return value (if this function has a
633
             * non-void return) and 2. set the return flag
634
             */
635
            insert_lowered_return((ir_return*)jumps[lower]);
636
            if(this->loop.loop) {
637
               /* If we are in a loop, replace the return instruction
638
                * with a break instruction, and then loop so that the
639
                * break instruction can be lowered if necessary.
640
                */
641
               ir_loop_jump* lowered = 0;
642
               lowered = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
643
               /* Note: we must update block_records and jumps to
644
                * reflect the fact that the control path has been
645
                * altered from a return to a break.
646
                */
647
               block_records[lower].min_strength = strength_break;
648
               jumps[lower]->replace_with(lowered);
649
               jumps[lower] = lowered;
650
            } else {
651
               /* If we are not in a loop, we then proceed as we would
652
                * for a continue statement (set the execute flag to
653
                * false to prevent the rest of the function from
654
                * executing).
655
                */
656
               goto lower_continue;
657
            }
658
            this->progress = true;
659
         } else if(jump_strengths[lower] == strength_break) {
660
            /* To lower a break, we create a break flag (if the loop
661
             * doesn't have one already) and add an instruction that
662
             * sets it.
663
             *
664
             * Then we proceed as we would for a continue statement
665
             * (set the execute flag to false to prevent the rest of
666
             * the loop body from executing).
667
             *
668
             * The visit() function for the loop will ensure that the
669
             * break flag is checked after executing the loop body.
670
             */
671
            jumps[lower]->insert_before(create_lowered_break());
672
            goto lower_continue;
673
         } else if(jump_strengths[lower] == strength_continue) {
674
lower_continue:
675
            /* To lower a continue, we create an execute flag (if the
676
             * loop doesn't have one already) and replace the continue
677
             * with an instruction that clears it.
678
             *
679
             * Note that this code path gets exercised when lowering
680
             * return statements that are not inside a loop, so
681
             * this->loop must be initialized even outside of loops.
682
             */
683
            ir_variable* execute_flag = this->loop.get_execute_flag();
684
            jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false), 0));
685
            /* Note: we must update block_records and jumps to reflect
686
             * the fact that the control path has been altered to an
687
             * instruction that clears the execute flag.
688
             */
689
            jumps[lower] = 0;
690
            block_records[lower].min_strength = strength_always_clears_execute_flag;
691
            block_records[lower].may_clear_execute_flag = true;
692
            this->progress = true;
693
 
694
            /* Let the loop run again, in case the other branch of the
695
             * if needs to be lowered too.
696
             */
697
         }
698
      }
699
 
700
      /* move out a jump out if possible */
701
      if(pull_out_jumps) {
702
         /* If one of the branches ends in a jump, and control cannot
703
          * fall out the bottom of the other branch, then we can move
704
          * the jump after the if.
705
          *
706
          * Set move_out to the branch we are moving a jump out of.
707
          */
708
         int move_out = -1;
709
         if(jumps[0] && block_records[1].min_strength >= strength_continue)
710
            move_out = 0;
711
         else if(jumps[1] && block_records[0].min_strength >= strength_continue)
712
            move_out = 1;
713
 
714
         if(move_out >= 0)
715
         {
716
            jumps[move_out]->remove();
717
            ir->insert_after(jumps[move_out]);
718
            /* Note: we must update block_records and jumps to reflect
719
             * the fact that the jump has been moved out of the if.
720
             */
721
            jumps[move_out] = 0;
722
            block_records[move_out].min_strength = strength_none;
723
            this->progress = true;
724
         }
725
      }
726
 
727
      /* Now satisfy the ANALYSIS postcondition by setting
728
       * this->block.min_strength and
729
       * this->block.may_clear_execute_flag based on the
730
       * characteristics of the two branches.
731
       */
732
      if(block_records[0].min_strength < block_records[1].min_strength)
733
         this->block.min_strength = block_records[0].min_strength;
734
      else
735
         this->block.min_strength = block_records[1].min_strength;
736
      this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag;
737
 
738
      /* Now we need to clean up the instructions that follow the
739
       * if.
740
       *
741
       * If those instructions are unreachable, then satisfy the
742
       * DEAD_CODE_ELIMINATION postcondition by eliminating them.
743
       * Otherwise that postcondition is already satisfied.
744
       */
745
      if(this->block.min_strength)
746
         truncate_after_instruction(ir);
747
      else if(this->block.may_clear_execute_flag)
748
      {
749
         /* If the "if" instruction might clear the execute flag, then
750
          * we need to guard any instructions that follow so that they
751
          * are only executed if the execute flag is set.
752
          *
753
          * If one of the branches of the "if" always clears the
754
          * execute flag, and the other branch never clears it, then
755
          * this is easy: just move all the instructions following the
756
          * "if" into the branch that never clears it.
757
          */
758
         int move_into = -1;
759
         if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag)
760
            move_into = 1;
761
         else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag)
762
            move_into = 0;
763
 
764
         if(move_into >= 0) {
765
            assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */
766
 
767
            exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions;
768
            exec_node* next = ir->get_next();
769
            if(!next->is_tail_sentinel()) {
770
               move_outer_block_inside(ir, list);
771
 
772
               /* If any instructions moved, then we need to visit
773
                * them (since they are now inside the "if").  Since
774
                * block_records[move_into] is in its default state
775
                * (see assertion above), we can safely replace
776
                * block_records[move_into] with the result of this
777
                * analysis.
778
                */
779
               exec_list list;
780
               list.head = next;
781
               block_records[move_into] = visit_block(&list);
782
 
783
               /*
784
                * Then we need to re-start our jump lowering, since one
785
                * of the instructions we moved might be a jump that
786
                * needs to be lowered.
787
                */
788
               this->progress = true;
789
               goto retry;
790
            }
791
         } else {
792
            /* If we get here, then the simple case didn't apply; we
793
             * need to actually guard the instructions that follow.
794
             *
795
             * To avoid creating unnecessarily-deep nesting, first
796
             * look through the instructions that follow and unwrap
797
             * any instructions that that are already wrapped in the
798
             * appropriate guard.
799
             */
800
            ir_instruction* ir_after;
801
            for(ir_after = (ir_instruction*)ir->get_next(); !ir_after->is_tail_sentinel();)
802
            {
803
               ir_if* ir_if = ir_after->as_if();
804
               if(ir_if && ir_if->else_instructions.is_empty()) {
805
                  ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable();
806
                  if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) {
807
                     ir_instruction* ir_next = (ir_instruction*)ir_after->get_next();
808
                     ir_after->insert_before(&ir_if->then_instructions);
809
                     ir_after->remove();
810
                     ir_after = ir_next;
811
                     continue;
812
                  }
813
               }
814
               ir_after = (ir_instruction*)ir_after->get_next();
815
 
816
               /* only set this if we find any unprotected instruction */
817
               this->progress = true;
818
            }
819
 
820
            /* Then, wrap all the instructions that follow in a single
821
             * guard.
822
             */
823
            if(!ir->get_next()->is_tail_sentinel()) {
824
               assert(this->loop.execute_flag);
825
               ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag));
826
               move_outer_block_inside(ir, &if_execute->then_instructions);
827
               ir->insert_after(if_execute);
828
            }
829
         }
830
      }
831
      --this->loop.nesting_depth;
832
      --this->function.nesting_depth;
833
   }
834
 
835
   virtual void visit(ir_loop *ir)
836
   {
837
      /* Visit the body of the loop, with a fresh data structure in
838
       * this->loop so that the analysis we do here won't bleed into
839
       * enclosing loops.
840
       *
841
       * We assume that all code after a loop is reachable from the
842
       * loop (see comments on enum jump_strength), so the
843
       * DEAD_CODE_ELIMINATION postcondition is automatically
844
       * satisfied, as is the block.min_strength portion of the
845
       * ANALYSIS postcondition.
846
       *
847
       * The block.may_clear_execute_flag portion of the ANALYSIS
848
       * postcondition is automatically satisfied because execute
849
       * flags do not propagate outside of loops.
850
       *
851
       * The loop.may_set_return_flag portion of the ANALYSIS
852
       * postcondition is handled below.
853
       */
854
      ++this->function.nesting_depth;
855
      loop_record saved_loop = this->loop;
856
      this->loop = loop_record(this->function.signature, ir);
857
 
858
      /* Recursively lower nested jumps.  This satisfies the
859
       * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
860
       * an unconditional continue or return at the bottom of the
861
       * loop, which are handled below.
862
       */
863
      block_record body = visit_block(&ir->body_instructions);
864
 
865
      /* If the loop ends in an unconditional continue, eliminate it
866
       * because it is redundant.
867
       */
868
      ir_instruction *ir_last
869
         = (ir_instruction *) ir->body_instructions.get_tail();
870
      if (get_jump_strength(ir_last) == strength_continue) {
871
         ir_last->remove();
872
      }
873
 
874
      /* If the loop ends in an unconditional return, and we are
875
       * lowering returns, lower it.
876
       */
877
      if (this->function.lower_return)
878
         lower_return_unconditionally(ir_last);
879
 
880
      if(body.min_strength >= strength_break) {
881
         /* FINISHME: If the min_strength of the loop body is
882
          * strength_break or strength_return, that means that it
883
          * isn't a loop at all, since control flow always leaves the
884
          * body of the loop via break or return.  In principle the
885
          * loop could be eliminated in this case.  This optimization
886
          * is not implemented yet.
887
          */
888
      }
889
 
890
      if(this->loop.break_flag) {
891
         /* We only get here if we are lowering breaks */
892
         assert (lower_break);
893
 
894
         /* If a break flag was generated while visiting the body of
895
          * the loop, then at least one break was lowered, so we need
896
          * to generate an if statement at the end of the loop that
897
          * does a "break" if the break flag is set.  The break we
898
          * generate won't violate the CONTAINED_JUMPS_LOWERED
899
          * postcondition, because should_lower_jump() always returns
900
          * false for a break that happens at the end of a loop.
901
          *
902
          * However, if the loop already ends in a conditional or
903
          * unconditional break, then we need to lower that break,
904
          * because it won't be at the end of the loop anymore.
905
          */
906
         lower_final_breaks(&ir->body_instructions);
907
 
908
         ir_if* break_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.break_flag));
909
         break_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
910
         ir->body_instructions.push_tail(break_if);
911
      }
912
 
913
      /* If the body of the loop may set the return flag, then at
914
       * least one return was lowered to a break, so we need to ensure
915
       * that the return flag is checked after the body of the loop is
916
       * executed.
917
       */
918
      if(this->loop.may_set_return_flag) {
919
         assert(this->function.return_flag);
920
         /* Generate the if statement to check the return flag */
921
         ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag));
922
         /* Note: we also need to propagate the knowledge that the
923
          * return flag may get set to the outer context.  This
924
          * satisfies the loop.may_set_return_flag part of the
925
          * ANALYSIS postcondition.
926
          */
927
         saved_loop.may_set_return_flag = true;
928
         if(saved_loop.loop)
929
            /* If this loop is nested inside another one, then the if
930
             * statement that we generated should break out of that
931
             * loop if the return flag is set.  Caller will lower that
932
             * break statement if necessary.
933
             */
934
            return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
935
         else
936
            /* Otherwise, all we need to do is ensure that the
937
             * instructions that follow are only executed if the
938
             * return flag is clear.  We can do that by moving those
939
             * instructions into the else clause of the generated if
940
             * statement.
941
             */
942
            move_outer_block_inside(ir, &return_if->else_instructions);
943
         ir->insert_after(return_if);
944
      }
945
 
946
      this->loop = saved_loop;
947
      --this->function.nesting_depth;
948
   }
949
 
950
   virtual void visit(ir_function_signature *ir)
951
   {
952
      /* these are not strictly necessary */
953
      assert(!this->function.signature);
954
      assert(!this->loop.loop);
955
 
956
      bool lower_return;
957
      if (strcmp(ir->function_name(), "main") == 0)
958
         lower_return = lower_main_return;
959
      else
960
         lower_return = lower_sub_return;
961
 
962
      function_record saved_function = this->function;
963
      loop_record saved_loop = this->loop;
964
      this->function = function_record(ir, lower_return);
965
      this->loop = loop_record(ir);
966
 
967
      assert(!this->loop.loop);
968
 
969
      /* Visit the body of the function to lower any jumps that occur
970
       * in it, except possibly an unconditional return statement at
971
       * the end of it.
972
       */
973
      visit_block(&ir->body);
974
 
975
      /* If the body ended in an unconditional return of non-void,
976
       * then we don't need to lower it because it's the one canonical
977
       * return.
978
       *
979
       * If the body ended in a return of void, eliminate it because
980
       * it is redundant.
981
       */
982
      if (ir->return_type->is_void() &&
983
          get_jump_strength((ir_instruction *) ir->body.get_tail())) {
984
         ir_jump *jump = (ir_jump *) ir->body.get_tail();
985
         assert (jump->ir_type == ir_type_return);
986
         jump->remove();
987
      }
988
 
989
      if(this->function.return_value)
990
         ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value)));
991
 
992
      this->loop = saved_loop;
993
      this->function = saved_function;
994
   }
995
 
996
   virtual void visit(class ir_function * ir)
997
   {
998
      visit_block(&ir->signatures);
999
   }
1000
};
1001
 
1002
} /* anonymous namespace */
1003
 
1004
bool
1005
do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_sub_return, bool lower_main_return, bool lower_continue, bool lower_break)
1006
{
1007
   ir_lower_jumps_visitor v;
1008
   v.pull_out_jumps = pull_out_jumps;
1009
   v.lower_continue = lower_continue;
1010
   v.lower_break = lower_break;
1011
   v.lower_sub_return = lower_sub_return;
1012
   v.lower_main_return = lower_main_return;
1013
 
1014
   bool progress_ever = false;
1015
   do {
1016
      v.progress = false;
1017
      visit_exec_list(instructions, &v);
1018
      progress_ever = v.progress || progress_ever;
1019
   } while (v.progress);
1020
 
1021
   return progress_ever;
1022
}