Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5564 serge 1
/*
2
 * Copyright 2011 Christoph Bumiller
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice shall be included in
12
 * all copies or substantial portions of the Software.
13
 *
14
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20
 * OTHER DEALINGS IN THE SOFTWARE.
21
 */
22
 
23
#include "tgsi/tgsi_dump.h"
24
#include "tgsi/tgsi_scan.h"
25
#include "tgsi/tgsi_util.h"
26
 
27
#include 
28
 
29
#include "codegen/nv50_ir.h"
30
#include "codegen/nv50_ir_util.h"
31
#include "codegen/nv50_ir_build_util.h"
32
 
33
namespace tgsi {
34
 
35
class Source;
36
 
37
static nv50_ir::operation translateOpcode(uint opcode);
38
static nv50_ir::DataFile translateFile(uint file);
39
static nv50_ir::TexTarget translateTexture(uint texTarg);
40
static nv50_ir::SVSemantic translateSysVal(uint sysval);
41
 
42
class Instruction
43
{
44
public:
45
   Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
46
 
47
   class SrcRegister
48
   {
49
   public:
50
      SrcRegister(const struct tgsi_full_src_register *src)
51
         : reg(src->Register),
52
           fsr(src)
53
      { }
54
 
55
      SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
56
 
57
      SrcRegister(const struct tgsi_ind_register& ind)
58
         : reg(tgsi_util_get_src_from_ind(&ind)),
59
           fsr(NULL)
60
      { }
61
 
62
      struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
63
      {
64
         struct tgsi_src_register reg;
65
         memset(®, 0, sizeof(reg));
66
         reg.Index = off.Index;
67
         reg.File = off.File;
68
         reg.SwizzleX = off.SwizzleX;
69
         reg.SwizzleY = off.SwizzleY;
70
         reg.SwizzleZ = off.SwizzleZ;
71
         return reg;
72
      }
73
 
74
      SrcRegister(const struct tgsi_texture_offset& off) :
75
         reg(offsetToSrc(off)),
76
         fsr(NULL)
77
      { }
78
 
79
      uint getFile() const { return reg.File; }
80
 
81
      bool is2D() const { return reg.Dimension; }
82
 
83
      bool isIndirect(int dim) const
84
      {
85
         return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
86
      }
87
 
88
      int getIndex(int dim) const
89
      {
90
         return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
91
      }
92
 
93
      int getSwizzle(int chan) const
94
      {
95
         return tgsi_util_get_src_register_swizzle(®, chan);
96
      }
97
 
98
      nv50_ir::Modifier getMod(int chan) const;
99
 
100
      SrcRegister getIndirect(int dim) const
101
      {
102
         assert(fsr && isIndirect(dim));
103
         if (dim)
104
            return SrcRegister(fsr->DimIndirect);
105
         return SrcRegister(fsr->Indirect);
106
      }
107
 
108
      uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
109
      {
110
         assert(reg.File == TGSI_FILE_IMMEDIATE);
111
         assert(!reg.Absolute);
112
         assert(!reg.Negate);
113
         return info->immd.data[reg.Index * 4 + getSwizzle(c)];
114
      }
115
 
116
   private:
117
      const struct tgsi_src_register reg;
118
      const struct tgsi_full_src_register *fsr;
119
   };
120
 
121
   class DstRegister
122
   {
123
   public:
124
      DstRegister(const struct tgsi_full_dst_register *dst)
125
         : reg(dst->Register),
126
           fdr(dst)
127
      { }
128
 
129
      DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
130
 
131
      uint getFile() const { return reg.File; }
132
 
133
      bool is2D() const { return reg.Dimension; }
134
 
135
      bool isIndirect(int dim) const
136
      {
137
         return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
138
      }
139
 
140
      int getIndex(int dim) const
141
      {
142
         return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
143
      }
144
 
145
      unsigned int getMask() const { return reg.WriteMask; }
146
 
147
      bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
148
 
149
      SrcRegister getIndirect(int dim) const
150
      {
151
         assert(fdr && isIndirect(dim));
152
         if (dim)
153
            return SrcRegister(fdr->DimIndirect);
154
         return SrcRegister(fdr->Indirect);
155
      }
156
 
157
   private:
158
      const struct tgsi_dst_register reg;
159
      const struct tgsi_full_dst_register *fdr;
160
   };
161
 
162
   inline uint getOpcode() const { return insn->Instruction.Opcode; }
163
 
164
   unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
165
   unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
166
 
167
   // mask of used components of source s
168
   unsigned int srcMask(unsigned int s) const;
169
 
170
   SrcRegister getSrc(unsigned int s) const
171
   {
172
      assert(s < srcCount());
173
      return SrcRegister(&insn->Src[s]);
174
   }
175
 
176
   DstRegister getDst(unsigned int d) const
177
   {
178
      assert(d < dstCount());
179
      return DstRegister(&insn->Dst[d]);
180
   }
181
 
182
   SrcRegister getTexOffset(unsigned int i) const
183
   {
184
      assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
185
      return SrcRegister(insn->TexOffsets[i]);
186
   }
187
 
188
   unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
189
 
190
   bool checkDstSrcAliasing() const;
191
 
192
   inline nv50_ir::operation getOP() const {
193
      return translateOpcode(getOpcode()); }
194
 
195
   nv50_ir::DataType inferSrcType() const;
196
   nv50_ir::DataType inferDstType() const;
197
 
198
   nv50_ir::CondCode getSetCond() const;
199
 
200
   nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
201
 
202
   inline uint getLabel() { return insn->Label.Label; }
203
 
204
   unsigned getSaturate() const { return insn->Instruction.Saturate; }
205
 
206
   void print() const
207
   {
208
      tgsi_dump_instruction(insn, 1);
209
   }
210
 
211
private:
212
   const struct tgsi_full_instruction *insn;
213
};
214
 
215
unsigned int Instruction::srcMask(unsigned int s) const
216
{
217
   unsigned int mask = insn->Dst[0].Register.WriteMask;
218
 
219
   switch (insn->Instruction.Opcode) {
220
   case TGSI_OPCODE_COS:
221
   case TGSI_OPCODE_SIN:
222
      return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
223
   case TGSI_OPCODE_DP2:
224
      return 0x3;
225
   case TGSI_OPCODE_DP3:
226
      return 0x7;
227
   case TGSI_OPCODE_DP4:
228
   case TGSI_OPCODE_DPH:
229
   case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
230
      return 0xf;
231
   case TGSI_OPCODE_DST:
232
      return mask & (s ? 0xa : 0x6);
233
   case TGSI_OPCODE_EX2:
234
   case TGSI_OPCODE_EXP:
235
   case TGSI_OPCODE_LG2:
236
   case TGSI_OPCODE_LOG:
237
   case TGSI_OPCODE_POW:
238
   case TGSI_OPCODE_RCP:
239
   case TGSI_OPCODE_RSQ:
240
   case TGSI_OPCODE_SCS:
241
      return 0x1;
242
   case TGSI_OPCODE_IF:
243
   case TGSI_OPCODE_UIF:
244
      return 0x1;
245
   case TGSI_OPCODE_LIT:
246
      return 0xb;
247
   case TGSI_OPCODE_TEX2:
248
   case TGSI_OPCODE_TXB2:
249
   case TGSI_OPCODE_TXL2:
250
      return (s == 0) ? 0xf : 0x3;
251
   case TGSI_OPCODE_TEX:
252
   case TGSI_OPCODE_TXB:
253
   case TGSI_OPCODE_TXD:
254
   case TGSI_OPCODE_TXL:
255
   case TGSI_OPCODE_TXP:
256
   case TGSI_OPCODE_LODQ:
257
   {
258
      const struct tgsi_instruction_texture *tex = &insn->Texture;
259
 
260
      assert(insn->Instruction.Texture);
261
 
262
      mask = 0x7;
263
      if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
264
          insn->Instruction.Opcode != TGSI_OPCODE_TXD)
265
         mask |= 0x8; /* bias, lod or proj */
266
 
267
      switch (tex->Texture) {
268
      case TGSI_TEXTURE_1D:
269
         mask &= 0x9;
270
         break;
271
      case TGSI_TEXTURE_SHADOW1D:
272
         mask &= 0xd;
273
         break;
274
      case TGSI_TEXTURE_1D_ARRAY:
275
      case TGSI_TEXTURE_2D:
276
      case TGSI_TEXTURE_RECT:
277
         mask &= 0xb;
278
         break;
279
      case TGSI_TEXTURE_CUBE_ARRAY:
280
      case TGSI_TEXTURE_SHADOW2D_ARRAY:
281
      case TGSI_TEXTURE_SHADOWCUBE:
282
      case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
283
         mask |= 0x8;
284
         break;
285
      default:
286
         break;
287
      }
288
   }
289
      return mask;
290
   case TGSI_OPCODE_XPD:
291
   {
292
      unsigned int x = 0;
293
      if (mask & 1) x |= 0x6;
294
      if (mask & 2) x |= 0x5;
295
      if (mask & 4) x |= 0x3;
296
      return x;
297
   }
298
   case TGSI_OPCODE_D2I:
299
   case TGSI_OPCODE_D2U:
300
   case TGSI_OPCODE_D2F:
301
   case TGSI_OPCODE_DSLT:
302
   case TGSI_OPCODE_DSGE:
303
   case TGSI_OPCODE_DSEQ:
304
   case TGSI_OPCODE_DSNE:
305
      switch (util_bitcount(mask)) {
306
      case 1: return 0x3;
307
      case 2: return 0xf;
308
      default:
309
         assert(!"unexpected mask");
310
         return 0xf;
311
      }
312
   case TGSI_OPCODE_I2D:
313
   case TGSI_OPCODE_U2D:
314
   case TGSI_OPCODE_F2D: {
315
      unsigned int x = 0;
316
      if ((mask & 0x3) == 0x3)
317
         x |= 1;
318
      if ((mask & 0xc) == 0xc)
319
         x |= 2;
320
      return x;
321
   }
322
   default:
323
      break;
324
   }
325
 
326
   return mask;
327
}
328
 
329
nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
330
{
331
   nv50_ir::Modifier m(0);
332
 
333
   if (reg.Absolute)
334
      m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
335
   if (reg.Negate)
336
      m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
337
   return m;
338
}
339
 
340
static nv50_ir::DataFile translateFile(uint file)
341
{
342
   switch (file) {
343
   case TGSI_FILE_CONSTANT:        return nv50_ir::FILE_MEMORY_CONST;
344
   case TGSI_FILE_INPUT:           return nv50_ir::FILE_SHADER_INPUT;
345
   case TGSI_FILE_OUTPUT:          return nv50_ir::FILE_SHADER_OUTPUT;
346
   case TGSI_FILE_TEMPORARY:       return nv50_ir::FILE_GPR;
347
   case TGSI_FILE_ADDRESS:         return nv50_ir::FILE_ADDRESS;
348
   case TGSI_FILE_PREDICATE:       return nv50_ir::FILE_PREDICATE;
349
   case TGSI_FILE_IMMEDIATE:       return nv50_ir::FILE_IMMEDIATE;
350
   case TGSI_FILE_SYSTEM_VALUE:    return nv50_ir::FILE_SYSTEM_VALUE;
351
   case TGSI_FILE_RESOURCE:        return nv50_ir::FILE_MEMORY_GLOBAL;
352
   case TGSI_FILE_SAMPLER:
353
   case TGSI_FILE_NULL:
354
   default:
355
      return nv50_ir::FILE_NULL;
356
   }
357
}
358
 
359
static nv50_ir::SVSemantic translateSysVal(uint sysval)
360
{
361
   switch (sysval) {
362
   case TGSI_SEMANTIC_FACE:       return nv50_ir::SV_FACE;
363
   case TGSI_SEMANTIC_PSIZE:      return nv50_ir::SV_POINT_SIZE;
364
   case TGSI_SEMANTIC_PRIMID:     return nv50_ir::SV_PRIMITIVE_ID;
365
   case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
366
   case TGSI_SEMANTIC_VERTEXID:   return nv50_ir::SV_VERTEX_ID;
367
   case TGSI_SEMANTIC_GRID_SIZE:  return nv50_ir::SV_NCTAID;
368
   case TGSI_SEMANTIC_BLOCK_ID:   return nv50_ir::SV_CTAID;
369
   case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
370
   case TGSI_SEMANTIC_THREAD_ID:  return nv50_ir::SV_TID;
371
   case TGSI_SEMANTIC_SAMPLEID:   return nv50_ir::SV_SAMPLE_INDEX;
372
   case TGSI_SEMANTIC_SAMPLEPOS:  return nv50_ir::SV_SAMPLE_POS;
373
   case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
374
   case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
375
   default:
376
      assert(0);
377
      return nv50_ir::SV_CLOCK;
378
   }
379
}
380
 
381
#define NV50_IR_TEX_TARG_CASE(a, b) \
382
   case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
383
 
384
static nv50_ir::TexTarget translateTexture(uint tex)
385
{
386
   switch (tex) {
387
   NV50_IR_TEX_TARG_CASE(1D, 1D);
388
   NV50_IR_TEX_TARG_CASE(2D, 2D);
389
   NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
390
   NV50_IR_TEX_TARG_CASE(3D, 3D);
391
   NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
392
   NV50_IR_TEX_TARG_CASE(RECT, RECT);
393
   NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
394
   NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
395
   NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
396
   NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
397
   NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
398
   NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
399
   NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
400
   NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
401
   NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
402
   NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
403
   NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
404
   NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
405
 
406
   case TGSI_TEXTURE_UNKNOWN:
407
   default:
408
      assert(!"invalid texture target");
409
      return nv50_ir::TEX_TARGET_2D;
410
   }
411
}
412
 
413
nv50_ir::DataType Instruction::inferSrcType() const
414
{
415
   switch (getOpcode()) {
416
   case TGSI_OPCODE_UIF:
417
   case TGSI_OPCODE_AND:
418
   case TGSI_OPCODE_OR:
419
   case TGSI_OPCODE_XOR:
420
   case TGSI_OPCODE_NOT:
421
   case TGSI_OPCODE_SHL:
422
   case TGSI_OPCODE_U2F:
423
   case TGSI_OPCODE_U2D:
424
   case TGSI_OPCODE_UADD:
425
   case TGSI_OPCODE_UDIV:
426
   case TGSI_OPCODE_UMOD:
427
   case TGSI_OPCODE_UMAD:
428
   case TGSI_OPCODE_UMUL:
429
   case TGSI_OPCODE_UMUL_HI:
430
   case TGSI_OPCODE_UMAX:
431
   case TGSI_OPCODE_UMIN:
432
   case TGSI_OPCODE_USEQ:
433
   case TGSI_OPCODE_USGE:
434
   case TGSI_OPCODE_USLT:
435
   case TGSI_OPCODE_USNE:
436
   case TGSI_OPCODE_USHR:
437
   case TGSI_OPCODE_UCMP:
438
   case TGSI_OPCODE_ATOMUADD:
439
   case TGSI_OPCODE_ATOMXCHG:
440
   case TGSI_OPCODE_ATOMCAS:
441
   case TGSI_OPCODE_ATOMAND:
442
   case TGSI_OPCODE_ATOMOR:
443
   case TGSI_OPCODE_ATOMXOR:
444
   case TGSI_OPCODE_ATOMUMIN:
445
   case TGSI_OPCODE_ATOMUMAX:
446
   case TGSI_OPCODE_UBFE:
447
   case TGSI_OPCODE_UMSB:
448
      return nv50_ir::TYPE_U32;
449
   case TGSI_OPCODE_I2F:
450
   case TGSI_OPCODE_I2D:
451
   case TGSI_OPCODE_IDIV:
452
   case TGSI_OPCODE_IMUL_HI:
453
   case TGSI_OPCODE_IMAX:
454
   case TGSI_OPCODE_IMIN:
455
   case TGSI_OPCODE_IABS:
456
   case TGSI_OPCODE_INEG:
457
   case TGSI_OPCODE_ISGE:
458
   case TGSI_OPCODE_ISHR:
459
   case TGSI_OPCODE_ISLT:
460
   case TGSI_OPCODE_ISSG:
461
   case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
462
   case TGSI_OPCODE_MOD:
463
   case TGSI_OPCODE_UARL:
464
   case TGSI_OPCODE_ATOMIMIN:
465
   case TGSI_OPCODE_ATOMIMAX:
466
   case TGSI_OPCODE_IBFE:
467
   case TGSI_OPCODE_IMSB:
468
      return nv50_ir::TYPE_S32;
469
   case TGSI_OPCODE_D2F:
470
   case TGSI_OPCODE_D2I:
471
   case TGSI_OPCODE_D2U:
472
   case TGSI_OPCODE_DABS:
473
   case TGSI_OPCODE_DNEG:
474
   case TGSI_OPCODE_DADD:
475
   case TGSI_OPCODE_DMUL:
476
   case TGSI_OPCODE_DMAX:
477
   case TGSI_OPCODE_DMIN:
478
   case TGSI_OPCODE_DSLT:
479
   case TGSI_OPCODE_DSGE:
480
   case TGSI_OPCODE_DSEQ:
481
   case TGSI_OPCODE_DSNE:
482
   case TGSI_OPCODE_DRCP:
483
   case TGSI_OPCODE_DSQRT:
484
   case TGSI_OPCODE_DMAD:
485
   case TGSI_OPCODE_DFRAC:
486
   case TGSI_OPCODE_DRSQ:
487
   case TGSI_OPCODE_DTRUNC:
488
   case TGSI_OPCODE_DCEIL:
489
   case TGSI_OPCODE_DFLR:
490
   case TGSI_OPCODE_DROUND:
491
      return nv50_ir::TYPE_F64;
492
   default:
493
      return nv50_ir::TYPE_F32;
494
   }
495
}
496
 
497
nv50_ir::DataType Instruction::inferDstType() const
498
{
499
   switch (getOpcode()) {
500
   case TGSI_OPCODE_D2U:
501
   case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
502
   case TGSI_OPCODE_D2I:
503
   case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
504
   case TGSI_OPCODE_FSEQ:
505
   case TGSI_OPCODE_FSGE:
506
   case TGSI_OPCODE_FSLT:
507
   case TGSI_OPCODE_FSNE:
508
   case TGSI_OPCODE_DSEQ:
509
   case TGSI_OPCODE_DSGE:
510
   case TGSI_OPCODE_DSLT:
511
   case TGSI_OPCODE_DSNE:
512
      return nv50_ir::TYPE_U32;
513
   case TGSI_OPCODE_I2F:
514
   case TGSI_OPCODE_U2F:
515
   case TGSI_OPCODE_D2F:
516
      return nv50_ir::TYPE_F32;
517
   case TGSI_OPCODE_I2D:
518
   case TGSI_OPCODE_U2D:
519
   case TGSI_OPCODE_F2D:
520
      return nv50_ir::TYPE_F64;
521
   default:
522
      return inferSrcType();
523
   }
524
}
525
 
526
nv50_ir::CondCode Instruction::getSetCond() const
527
{
528
   using namespace nv50_ir;
529
 
530
   switch (getOpcode()) {
531
   case TGSI_OPCODE_SLT:
532
   case TGSI_OPCODE_ISLT:
533
   case TGSI_OPCODE_USLT:
534
   case TGSI_OPCODE_FSLT:
535
   case TGSI_OPCODE_DSLT:
536
      return CC_LT;
537
   case TGSI_OPCODE_SLE:
538
      return CC_LE;
539
   case TGSI_OPCODE_SGE:
540
   case TGSI_OPCODE_ISGE:
541
   case TGSI_OPCODE_USGE:
542
   case TGSI_OPCODE_FSGE:
543
   case TGSI_OPCODE_DSGE:
544
      return CC_GE;
545
   case TGSI_OPCODE_SGT:
546
      return CC_GT;
547
   case TGSI_OPCODE_SEQ:
548
   case TGSI_OPCODE_USEQ:
549
   case TGSI_OPCODE_FSEQ:
550
   case TGSI_OPCODE_DSEQ:
551
      return CC_EQ;
552
   case TGSI_OPCODE_SNE:
553
   case TGSI_OPCODE_FSNE:
554
   case TGSI_OPCODE_DSNE:
555
      return CC_NEU;
556
   case TGSI_OPCODE_USNE:
557
      return CC_NE;
558
   default:
559
      return CC_ALWAYS;
560
   }
561
}
562
 
563
#define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
564
 
565
static nv50_ir::operation translateOpcode(uint opcode)
566
{
567
   switch (opcode) {
568
   NV50_IR_OPCODE_CASE(ARL, SHL);
569
   NV50_IR_OPCODE_CASE(MOV, MOV);
570
 
571
   NV50_IR_OPCODE_CASE(RCP, RCP);
572
   NV50_IR_OPCODE_CASE(RSQ, RSQ);
573
 
574
   NV50_IR_OPCODE_CASE(MUL, MUL);
575
   NV50_IR_OPCODE_CASE(ADD, ADD);
576
 
577
   NV50_IR_OPCODE_CASE(MIN, MIN);
578
   NV50_IR_OPCODE_CASE(MAX, MAX);
579
   NV50_IR_OPCODE_CASE(SLT, SET);
580
   NV50_IR_OPCODE_CASE(SGE, SET);
581
   NV50_IR_OPCODE_CASE(MAD, MAD);
582
   NV50_IR_OPCODE_CASE(SUB, SUB);
583
 
584
   NV50_IR_OPCODE_CASE(FLR, FLOOR);
585
   NV50_IR_OPCODE_CASE(ROUND, CVT);
586
   NV50_IR_OPCODE_CASE(EX2, EX2);
587
   NV50_IR_OPCODE_CASE(LG2, LG2);
588
   NV50_IR_OPCODE_CASE(POW, POW);
589
 
590
   NV50_IR_OPCODE_CASE(ABS, ABS);
591
 
592
   NV50_IR_OPCODE_CASE(COS, COS);
593
   NV50_IR_OPCODE_CASE(DDX, DFDX);
594
   NV50_IR_OPCODE_CASE(DDX_FINE, DFDX);
595
   NV50_IR_OPCODE_CASE(DDY, DFDY);
596
   NV50_IR_OPCODE_CASE(DDY_FINE, DFDY);
597
   NV50_IR_OPCODE_CASE(KILL, DISCARD);
598
 
599
   NV50_IR_OPCODE_CASE(SEQ, SET);
600
   NV50_IR_OPCODE_CASE(SGT, SET);
601
   NV50_IR_OPCODE_CASE(SIN, SIN);
602
   NV50_IR_OPCODE_CASE(SLE, SET);
603
   NV50_IR_OPCODE_CASE(SNE, SET);
604
   NV50_IR_OPCODE_CASE(TEX, TEX);
605
   NV50_IR_OPCODE_CASE(TXD, TXD);
606
   NV50_IR_OPCODE_CASE(TXP, TEX);
607
 
608
   NV50_IR_OPCODE_CASE(CAL, CALL);
609
   NV50_IR_OPCODE_CASE(RET, RET);
610
   NV50_IR_OPCODE_CASE(CMP, SLCT);
611
 
612
   NV50_IR_OPCODE_CASE(TXB, TXB);
613
 
614
   NV50_IR_OPCODE_CASE(DIV, DIV);
615
 
616
   NV50_IR_OPCODE_CASE(TXL, TXL);
617
 
618
   NV50_IR_OPCODE_CASE(CEIL, CEIL);
619
   NV50_IR_OPCODE_CASE(I2F, CVT);
620
   NV50_IR_OPCODE_CASE(NOT, NOT);
621
   NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
622
   NV50_IR_OPCODE_CASE(SHL, SHL);
623
 
624
   NV50_IR_OPCODE_CASE(AND, AND);
625
   NV50_IR_OPCODE_CASE(OR, OR);
626
   NV50_IR_OPCODE_CASE(MOD, MOD);
627
   NV50_IR_OPCODE_CASE(XOR, XOR);
628
   NV50_IR_OPCODE_CASE(SAD, SAD);
629
   NV50_IR_OPCODE_CASE(TXF, TXF);
630
   NV50_IR_OPCODE_CASE(TXQ, TXQ);
631
   NV50_IR_OPCODE_CASE(TG4, TXG);
632
   NV50_IR_OPCODE_CASE(LODQ, TXLQ);
633
 
634
   NV50_IR_OPCODE_CASE(EMIT, EMIT);
635
   NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
636
 
637
   NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
638
 
639
   NV50_IR_OPCODE_CASE(F2I, CVT);
640
   NV50_IR_OPCODE_CASE(FSEQ, SET);
641
   NV50_IR_OPCODE_CASE(FSGE, SET);
642
   NV50_IR_OPCODE_CASE(FSLT, SET);
643
   NV50_IR_OPCODE_CASE(FSNE, SET);
644
   NV50_IR_OPCODE_CASE(IDIV, DIV);
645
   NV50_IR_OPCODE_CASE(IMAX, MAX);
646
   NV50_IR_OPCODE_CASE(IMIN, MIN);
647
   NV50_IR_OPCODE_CASE(IABS, ABS);
648
   NV50_IR_OPCODE_CASE(INEG, NEG);
649
   NV50_IR_OPCODE_CASE(ISGE, SET);
650
   NV50_IR_OPCODE_CASE(ISHR, SHR);
651
   NV50_IR_OPCODE_CASE(ISLT, SET);
652
   NV50_IR_OPCODE_CASE(F2U, CVT);
653
   NV50_IR_OPCODE_CASE(U2F, CVT);
654
   NV50_IR_OPCODE_CASE(UADD, ADD);
655
   NV50_IR_OPCODE_CASE(UDIV, DIV);
656
   NV50_IR_OPCODE_CASE(UMAD, MAD);
657
   NV50_IR_OPCODE_CASE(UMAX, MAX);
658
   NV50_IR_OPCODE_CASE(UMIN, MIN);
659
   NV50_IR_OPCODE_CASE(UMOD, MOD);
660
   NV50_IR_OPCODE_CASE(UMUL, MUL);
661
   NV50_IR_OPCODE_CASE(USEQ, SET);
662
   NV50_IR_OPCODE_CASE(USGE, SET);
663
   NV50_IR_OPCODE_CASE(USHR, SHR);
664
   NV50_IR_OPCODE_CASE(USLT, SET);
665
   NV50_IR_OPCODE_CASE(USNE, SET);
666
 
667
   NV50_IR_OPCODE_CASE(DABS, ABS);
668
   NV50_IR_OPCODE_CASE(DNEG, NEG);
669
   NV50_IR_OPCODE_CASE(DADD, ADD);
670
   NV50_IR_OPCODE_CASE(DMUL, MUL);
671
   NV50_IR_OPCODE_CASE(DMAX, MAX);
672
   NV50_IR_OPCODE_CASE(DMIN, MIN);
673
   NV50_IR_OPCODE_CASE(DSLT, SET);
674
   NV50_IR_OPCODE_CASE(DSGE, SET);
675
   NV50_IR_OPCODE_CASE(DSEQ, SET);
676
   NV50_IR_OPCODE_CASE(DSNE, SET);
677
   NV50_IR_OPCODE_CASE(DRCP, RCP);
678
   NV50_IR_OPCODE_CASE(DSQRT, SQRT);
679
   NV50_IR_OPCODE_CASE(DMAD, MAD);
680
   NV50_IR_OPCODE_CASE(D2I, CVT);
681
   NV50_IR_OPCODE_CASE(D2U, CVT);
682
   NV50_IR_OPCODE_CASE(I2D, CVT);
683
   NV50_IR_OPCODE_CASE(U2D, CVT);
684
   NV50_IR_OPCODE_CASE(DRSQ, RSQ);
685
   NV50_IR_OPCODE_CASE(DTRUNC, TRUNC);
686
   NV50_IR_OPCODE_CASE(DCEIL, CEIL);
687
   NV50_IR_OPCODE_CASE(DFLR, FLOOR);
688
   NV50_IR_OPCODE_CASE(DROUND, CVT);
689
 
690
   NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
691
   NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
692
 
693
   NV50_IR_OPCODE_CASE(SAMPLE, TEX);
694
   NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
695
   NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
696
   NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
697
   NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
698
   NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
699
   NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
700
   NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
701
   NV50_IR_OPCODE_CASE(GATHER4, TXG);
702
   NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
703
 
704
   NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
705
   NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
706
   NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
707
   NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
708
   NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
709
   NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
710
   NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
711
   NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
712
   NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
713
   NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
714
 
715
   NV50_IR_OPCODE_CASE(TEX2, TEX);
716
   NV50_IR_OPCODE_CASE(TXB2, TXB);
717
   NV50_IR_OPCODE_CASE(TXL2, TXL);
718
 
719
   NV50_IR_OPCODE_CASE(IBFE, EXTBF);
720
   NV50_IR_OPCODE_CASE(UBFE, EXTBF);
721
   NV50_IR_OPCODE_CASE(BFI, INSBF);
722
   NV50_IR_OPCODE_CASE(BREV, EXTBF);
723
   NV50_IR_OPCODE_CASE(POPC, POPCNT);
724
   NV50_IR_OPCODE_CASE(LSB, BFIND);
725
   NV50_IR_OPCODE_CASE(IMSB, BFIND);
726
   NV50_IR_OPCODE_CASE(UMSB, BFIND);
727
 
728
   NV50_IR_OPCODE_CASE(END, EXIT);
729
 
730
   default:
731
      return nv50_ir::OP_NOP;
732
   }
733
}
734
 
735
static uint16_t opcodeToSubOp(uint opcode)
736
{
737
   switch (opcode) {
738
   case TGSI_OPCODE_LFENCE:   return NV50_IR_SUBOP_MEMBAR(L, GL);
739
   case TGSI_OPCODE_SFENCE:   return NV50_IR_SUBOP_MEMBAR(S, GL);
740
   case TGSI_OPCODE_MFENCE:   return NV50_IR_SUBOP_MEMBAR(M, GL);
741
   case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
742
   case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
743
   case TGSI_OPCODE_ATOMCAS:  return NV50_IR_SUBOP_ATOM_CAS;
744
   case TGSI_OPCODE_ATOMAND:  return NV50_IR_SUBOP_ATOM_AND;
745
   case TGSI_OPCODE_ATOMOR:   return NV50_IR_SUBOP_ATOM_OR;
746
   case TGSI_OPCODE_ATOMXOR:  return NV50_IR_SUBOP_ATOM_XOR;
747
   case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
748
   case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
749
   case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
750
   case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
751
   case TGSI_OPCODE_IMUL_HI:
752
   case TGSI_OPCODE_UMUL_HI:
753
      return NV50_IR_SUBOP_MUL_HIGH;
754
   default:
755
      return 0;
756
   }
757
}
758
 
759
bool Instruction::checkDstSrcAliasing() const
760
{
761
   if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
762
      return false;
763
 
764
   for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
765
      if (insn->Src[s].Register.File == TGSI_FILE_NULL)
766
         break;
767
      if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
768
          insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
769
         return true;
770
   }
771
   return false;
772
}
773
 
774
class Source
775
{
776
public:
777
   Source(struct nv50_ir_prog_info *);
778
   ~Source();
779
 
780
public:
781
   bool scanSource();
782
   unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
783
 
784
public:
785
   struct tgsi_shader_info scan;
786
   struct tgsi_full_instruction *insns;
787
   const struct tgsi_token *tokens;
788
   struct nv50_ir_prog_info *info;
789
 
790
   nv50_ir::DynArray tempArrays;
791
   nv50_ir::DynArray immdArrays;
792
 
793
   typedef nv50_ir::BuildUtil::Location Location;
794
   // these registers are per-subroutine, cannot be used for parameter passing
795
   std::set locals;
796
 
797
   bool mainTempsInLMem;
798
 
799
   int clipVertexOutput;
800
 
801
   struct TextureView {
802
      uint8_t target; // TGSI_TEXTURE_*
803
   };
804
   std::vector textureViews;
805
 
806
   struct Resource {
807
      uint8_t target; // TGSI_TEXTURE_*
808
      bool raw;
809
      uint8_t slot; // $surface index
810
   };
811
   std::vector resources;
812
 
813
private:
814
   int inferSysValDirection(unsigned sn) const;
815
   bool scanDeclaration(const struct tgsi_full_declaration *);
816
   bool scanInstruction(const struct tgsi_full_instruction *);
817
   void scanProperty(const struct tgsi_full_property *);
818
   void scanImmediate(const struct tgsi_full_immediate *);
819
 
820
   inline bool isEdgeFlagPassthrough(const Instruction&) const;
821
};
822
 
823
Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
824
{
825
   tokens = (const struct tgsi_token *)info->bin.source;
826
 
827
   if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
828
      tgsi_dump(tokens, 0);
829
 
830
   mainTempsInLMem = FALSE;
831
}
832
 
833
Source::~Source()
834
{
835
   if (insns)
836
      FREE(insns);
837
 
838
   if (info->immd.data)
839
      FREE(info->immd.data);
840
   if (info->immd.type)
841
      FREE(info->immd.type);
842
}
843
 
844
bool Source::scanSource()
845
{
846
   unsigned insnCount = 0;
847
   struct tgsi_parse_context parse;
848
 
849
   tgsi_scan_shader(tokens, &scan);
850
 
851
   insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
852
                                                  sizeof(insns[0]));
853
   if (!insns)
854
      return false;
855
 
856
   clipVertexOutput = -1;
857
 
858
   textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
859
   resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
860
 
861
   info->immd.bufSize = 0;
862
 
863
   info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
864
   info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
865
   info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
866
 
867
   if (info->type == PIPE_SHADER_FRAGMENT) {
868
      info->prop.fp.writesDepth = scan.writes_z;
869
      info->prop.fp.usesDiscard = scan.uses_kill;
870
   } else
871
   if (info->type == PIPE_SHADER_GEOMETRY) {
872
      info->prop.gp.instanceCount = 1; // default value
873
   }
874
 
875
   info->io.viewportId = -1;
876
 
877
   info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
878
   info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
879
 
880
   tgsi_parse_init(&parse, tokens);
881
   while (!tgsi_parse_end_of_tokens(&parse)) {
882
      tgsi_parse_token(&parse);
883
 
884
      switch (parse.FullToken.Token.Type) {
885
      case TGSI_TOKEN_TYPE_IMMEDIATE:
886
         scanImmediate(&parse.FullToken.FullImmediate);
887
         break;
888
      case TGSI_TOKEN_TYPE_DECLARATION:
889
         scanDeclaration(&parse.FullToken.FullDeclaration);
890
         break;
891
      case TGSI_TOKEN_TYPE_INSTRUCTION:
892
         insns[insnCount++] = parse.FullToken.FullInstruction;
893
         scanInstruction(&parse.FullToken.FullInstruction);
894
         break;
895
      case TGSI_TOKEN_TYPE_PROPERTY:
896
         scanProperty(&parse.FullToken.FullProperty);
897
         break;
898
      default:
899
         INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
900
         break;
901
      }
902
   }
903
   tgsi_parse_free(&parse);
904
 
905
   if (mainTempsInLMem)
906
      info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
907
 
908
   if (info->io.genUserClip > 0) {
909
      info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
910
 
911
      const unsigned int nOut = (info->io.genUserClip + 3) / 4;
912
 
913
      for (unsigned int n = 0; n < nOut; ++n) {
914
         unsigned int i = info->numOutputs++;
915
         info->out[i].id = i;
916
         info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
917
         info->out[i].si = n;
918
         info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
919
      }
920
   }
921
 
922
   return info->assignSlots(info) == 0;
923
}
924
 
925
void Source::scanProperty(const struct tgsi_full_property *prop)
926
{
927
   switch (prop->Property.PropertyName) {
928
   case TGSI_PROPERTY_GS_OUTPUT_PRIM:
929
      info->prop.gp.outputPrim = prop->u[0].Data;
930
      break;
931
   case TGSI_PROPERTY_GS_INPUT_PRIM:
932
      info->prop.gp.inputPrim = prop->u[0].Data;
933
      break;
934
   case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
935
      info->prop.gp.maxVertices = prop->u[0].Data;
936
      break;
937
   case TGSI_PROPERTY_GS_INVOCATIONS:
938
      info->prop.gp.instanceCount = prop->u[0].Data;
939
      break;
940
   case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
941
      info->prop.fp.separateFragData = TRUE;
942
      break;
943
   case TGSI_PROPERTY_FS_COORD_ORIGIN:
944
   case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
945
      // we don't care
946
      break;
947
   case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
948
      info->io.genUserClip = -1;
949
      break;
950
   default:
951
      INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
952
      break;
953
   }
954
}
955
 
956
void Source::scanImmediate(const struct tgsi_full_immediate *imm)
957
{
958
   const unsigned n = info->immd.count++;
959
 
960
   assert(n < scan.immediate_count);
961
 
962
   for (int c = 0; c < 4; ++c)
963
      info->immd.data[n * 4 + c] = imm->u[c].Uint;
964
 
965
   info->immd.type[n] = imm->Immediate.DataType;
966
}
967
 
968
int Source::inferSysValDirection(unsigned sn) const
969
{
970
   switch (sn) {
971
   case TGSI_SEMANTIC_INSTANCEID:
972
   case TGSI_SEMANTIC_VERTEXID:
973
      return 1;
974
   case TGSI_SEMANTIC_LAYER:
975
#if 0
976
   case TGSI_SEMANTIC_VIEWPORTINDEX:
977
      return 0;
978
#endif
979
   case TGSI_SEMANTIC_PRIMID:
980
      return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
981
   default:
982
      return 0;
983
   }
984
}
985
 
986
bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
987
{
988
   unsigned i, c;
989
   unsigned sn = TGSI_SEMANTIC_GENERIC;
990
   unsigned si = 0;
991
   const unsigned first = decl->Range.First, last = decl->Range.Last;
992
 
993
   if (decl->Declaration.Semantic) {
994
      sn = decl->Semantic.Name;
995
      si = decl->Semantic.Index;
996
   }
997
 
998
   if (decl->Declaration.Local) {
999
      for (i = first; i <= last; ++i) {
1000
         for (c = 0; c < 4; ++c) {
1001
            locals.insert(
1002
               Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
1003
         }
1004
      }
1005
   }
1006
 
1007
   switch (decl->Declaration.File) {
1008
   case TGSI_FILE_INPUT:
1009
      if (info->type == PIPE_SHADER_VERTEX) {
1010
         // all vertex attributes are equal
1011
         for (i = first; i <= last; ++i) {
1012
            info->in[i].sn = TGSI_SEMANTIC_GENERIC;
1013
            info->in[i].si = i;
1014
         }
1015
      } else {
1016
         for (i = first; i <= last; ++i, ++si) {
1017
            info->in[i].id = i;
1018
            info->in[i].sn = sn;
1019
            info->in[i].si = si;
1020
            if (info->type == PIPE_SHADER_FRAGMENT) {
1021
               // translate interpolation mode
1022
               switch (decl->Interp.Interpolate) {
1023
               case TGSI_INTERPOLATE_CONSTANT:
1024
                  info->in[i].flat = 1;
1025
                  break;
1026
               case TGSI_INTERPOLATE_COLOR:
1027
                  info->in[i].sc = 1;
1028
                  break;
1029
               case TGSI_INTERPOLATE_LINEAR:
1030
                  info->in[i].linear = 1;
1031
                  break;
1032
               default:
1033
                  break;
1034
               }
1035
               if (decl->Interp.Location || info->io.sampleInterp)
1036
                  info->in[i].centroid = 1;
1037
            }
1038
         }
1039
      }
1040
      break;
1041
   case TGSI_FILE_OUTPUT:
1042
      for (i = first; i <= last; ++i, ++si) {
1043
         switch (sn) {
1044
         case TGSI_SEMANTIC_POSITION:
1045
            if (info->type == PIPE_SHADER_FRAGMENT)
1046
               info->io.fragDepth = i;
1047
            else
1048
            if (clipVertexOutput < 0)
1049
               clipVertexOutput = i;
1050
            break;
1051
         case TGSI_SEMANTIC_COLOR:
1052
            if (info->type == PIPE_SHADER_FRAGMENT)
1053
               info->prop.fp.numColourResults++;
1054
            break;
1055
         case TGSI_SEMANTIC_EDGEFLAG:
1056
            info->io.edgeFlagOut = i;
1057
            break;
1058
         case TGSI_SEMANTIC_CLIPVERTEX:
1059
            clipVertexOutput = i;
1060
            break;
1061
         case TGSI_SEMANTIC_CLIPDIST:
1062
            info->io.clipDistanceMask |=
1063
               decl->Declaration.UsageMask << (si * 4);
1064
            info->io.genUserClip = -1;
1065
            break;
1066
         case TGSI_SEMANTIC_SAMPLEMASK:
1067
            info->io.sampleMask = i;
1068
            break;
1069
         case TGSI_SEMANTIC_VIEWPORT_INDEX:
1070
            info->io.viewportId = i;
1071
            break;
1072
         default:
1073
            break;
1074
         }
1075
         info->out[i].id = i;
1076
         info->out[i].sn = sn;
1077
         info->out[i].si = si;
1078
      }
1079
      break;
1080
   case TGSI_FILE_SYSTEM_VALUE:
1081
      switch (sn) {
1082
      case TGSI_SEMANTIC_INSTANCEID:
1083
         info->io.instanceId = first;
1084
         break;
1085
      case TGSI_SEMANTIC_VERTEXID:
1086
         info->io.vertexId = first;
1087
         break;
1088
      default:
1089
         break;
1090
      }
1091
      for (i = first; i <= last; ++i, ++si) {
1092
         info->sv[i].sn = sn;
1093
         info->sv[i].si = si;
1094
         info->sv[i].input = inferSysValDirection(sn);
1095
      }
1096
      break;
1097
   case TGSI_FILE_RESOURCE:
1098
      for (i = first; i <= last; ++i) {
1099
         resources[i].target = decl->Resource.Resource;
1100
         resources[i].raw = decl->Resource.Raw;
1101
         resources[i].slot = i;
1102
      }
1103
      break;
1104
   case TGSI_FILE_SAMPLER_VIEW:
1105
      for (i = first; i <= last; ++i)
1106
         textureViews[i].target = decl->SamplerView.Resource;
1107
      break;
1108
   case TGSI_FILE_NULL:
1109
   case TGSI_FILE_TEMPORARY:
1110
   case TGSI_FILE_ADDRESS:
1111
   case TGSI_FILE_CONSTANT:
1112
   case TGSI_FILE_IMMEDIATE:
1113
   case TGSI_FILE_PREDICATE:
1114
   case TGSI_FILE_SAMPLER:
1115
      break;
1116
   default:
1117
      ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1118
      return false;
1119
   }
1120
   return true;
1121
}
1122
 
1123
inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1124
{
1125
   return insn.getOpcode() == TGSI_OPCODE_MOV &&
1126
      insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1127
      insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1128
}
1129
 
1130
bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1131
{
1132
   Instruction insn(inst);
1133
 
1134
   if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1135
      info->numBarriers = 1;
1136
 
1137
   if (insn.dstCount()) {
1138
      if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1139
         Instruction::DstRegister dst = insn.getDst(0);
1140
 
1141
         if (dst.isIndirect(0))
1142
            for (unsigned i = 0; i < info->numOutputs; ++i)
1143
               info->out[i].mask = 0xf;
1144
         else
1145
            info->out[dst.getIndex(0)].mask |= dst.getMask();
1146
 
1147
         if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1148
             info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1149
             info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1150
             info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1151
             info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1152
            info->out[dst.getIndex(0)].mask &= 1;
1153
 
1154
         if (isEdgeFlagPassthrough(insn))
1155
            info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1156
      } else
1157
      if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1158
         if (insn.getDst(0).isIndirect(0))
1159
            mainTempsInLMem = TRUE;
1160
      }
1161
   }
1162
 
1163
   for (unsigned s = 0; s < insn.srcCount(); ++s) {
1164
      Instruction::SrcRegister src = insn.getSrc(s);
1165
      if (src.getFile() == TGSI_FILE_TEMPORARY) {
1166
         if (src.isIndirect(0))
1167
            mainTempsInLMem = TRUE;
1168
      } else
1169
      if (src.getFile() == TGSI_FILE_RESOURCE) {
1170
         if (src.getIndex(0) == TGSI_RESOURCE_GLOBAL)
1171
            info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1172
               0x1 : 0x2;
1173
      }
1174
      if (src.getFile() != TGSI_FILE_INPUT)
1175
         continue;
1176
      unsigned mask = insn.srcMask(s);
1177
 
1178
      if (src.isIndirect(0)) {
1179
         for (unsigned i = 0; i < info->numInputs; ++i)
1180
            info->in[i].mask = 0xf;
1181
      } else {
1182
         const int i = src.getIndex(0);
1183
         for (unsigned c = 0; c < 4; ++c) {
1184
            if (!(mask & (1 << c)))
1185
               continue;
1186
            int k = src.getSwizzle(c);
1187
            if (k <= TGSI_SWIZZLE_W)
1188
               info->in[i].mask |= 1 << k;
1189
         }
1190
         switch (info->in[i].sn) {
1191
         case TGSI_SEMANTIC_PSIZE:
1192
         case TGSI_SEMANTIC_PRIMID:
1193
         case TGSI_SEMANTIC_FOG:
1194
            info->in[i].mask &= 0x1;
1195
            break;
1196
         case TGSI_SEMANTIC_PCOORD:
1197
            info->in[i].mask &= 0x3;
1198
            break;
1199
         default:
1200
            break;
1201
         }
1202
      }
1203
   }
1204
   return true;
1205
}
1206
 
1207
nv50_ir::TexInstruction::Target
1208
Instruction::getTexture(const tgsi::Source *code, int s) const
1209
{
1210
   // XXX: indirect access
1211
   unsigned int r;
1212
 
1213
   switch (getSrc(s).getFile()) {
1214
   case TGSI_FILE_RESOURCE:
1215
      r = getSrc(s).getIndex(0);
1216
      return translateTexture(code->resources.at(r).target);
1217
   case TGSI_FILE_SAMPLER_VIEW:
1218
      r = getSrc(s).getIndex(0);
1219
      return translateTexture(code->textureViews.at(r).target);
1220
   default:
1221
      return translateTexture(insn->Texture.Texture);
1222
   }
1223
}
1224
 
1225
} // namespace tgsi
1226
 
1227
namespace {
1228
 
1229
using namespace nv50_ir;
1230
 
1231
class Converter : public BuildUtil
1232
{
1233
public:
1234
   Converter(Program *, const tgsi::Source *);
1235
   ~Converter();
1236
 
1237
   bool run();
1238
 
1239
private:
1240
   struct Subroutine
1241
   {
1242
      Subroutine(Function *f) : f(f) { }
1243
      Function *f;
1244
      ValueMap values;
1245
   };
1246
 
1247
   Value *shiftAddress(Value *);
1248
   Value *getVertexBase(int s);
1249
   DataArray *getArrayForFile(unsigned file, int idx);
1250
   Value *fetchSrc(int s, int c);
1251
   Value *acquireDst(int d, int c);
1252
   void storeDst(int d, int c, Value *);
1253
 
1254
   Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1255
   void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1256
                 Value *val, Value *ptr);
1257
 
1258
   Value *applySrcMod(Value *, int s, int c);
1259
 
1260
   Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1261
   Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1262
   Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1263
 
1264
   bool handleInstruction(const struct tgsi_full_instruction *);
1265
   void exportOutputs();
1266
   inline Subroutine *getSubroutine(unsigned ip);
1267
   inline Subroutine *getSubroutine(Function *);
1268
   inline bool isEndOfSubroutine(uint ip);
1269
 
1270
   void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1271
 
1272
   // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1273
   void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1274
   void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1275
   void handleTXF(Value *dst0[4], int R, int L_M);
1276
   void handleTXQ(Value *dst0[4], enum TexQuery);
1277
   void handleLIT(Value *dst0[4]);
1278
   void handleUserClipPlanes();
1279
 
1280
   Symbol *getResourceBase(int r);
1281
   void getResourceCoords(std::vector&, int r, int s);
1282
 
1283
   void handleLOAD(Value *dst0[4]);
1284
   void handleSTORE();
1285
   void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1286
 
1287
   void handleINTERP(Value *dst0[4]);
1288
 
1289
   Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1290
 
1291
   void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1292
 
1293
   Value *buildDot(int dim);
1294
 
1295
   class BindArgumentsPass : public Pass {
1296
   public:
1297
      BindArgumentsPass(Converter &conv) : conv(conv) { }
1298
 
1299
   private:
1300
      Converter &conv;
1301
      Subroutine *sub;
1302
 
1303
      inline const Location *getValueLocation(Subroutine *, Value *);
1304
 
1305
      template inline void
1306
      updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1307
                     T (Function::*proto));
1308
 
1309
      template inline void
1310
      updatePrototype(BitSet *set, void (Function::*updateSet)(),
1311
                      T (Function::*proto));
1312
 
1313
   protected:
1314
      bool visit(Function *);
1315
      bool visit(BasicBlock *bb) { return false; }
1316
   };
1317
 
1318
private:
1319
   const tgsi::Source *code;
1320
   const struct nv50_ir_prog_info *info;
1321
 
1322
   struct {
1323
      std::map map;
1324
      Subroutine *cur;
1325
   } sub;
1326
 
1327
   uint ip; // instruction pointer
1328
 
1329
   tgsi::Instruction tgsi;
1330
 
1331
   DataType dstTy;
1332
   DataType srcTy;
1333
 
1334
   DataArray tData; // TGSI_FILE_TEMPORARY
1335
   DataArray aData; // TGSI_FILE_ADDRESS
1336
   DataArray pData; // TGSI_FILE_PREDICATE
1337
   DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1338
 
1339
   Value *zero;
1340
   Value *fragCoord[4];
1341
   Value *clipVtx[4];
1342
 
1343
   Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1344
   uint8_t vtxBaseValid;
1345
 
1346
   Stack condBBs;  // fork BB, then else clause BB
1347
   Stack joinBBs;  // fork BB, for inserting join ops on ENDIF
1348
   Stack loopBBs;  // loop headers
1349
   Stack breakBBs; // end of / after loop
1350
 
1351
   Value *viewport;
1352
};
1353
 
1354
Symbol *
1355
Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1356
{
1357
   const int swz = src.getSwizzle(c);
1358
 
1359
   /* TODO: Use Array ID when it's available for the index */
1360
   return makeSym(src.getFile(),
1361
                  src.is2D() ? src.getIndex(1) : 0,
1362
                  src.getIndex(0), swz,
1363
                  src.getIndex(0) * 16 + swz * 4);
1364
}
1365
 
1366
Symbol *
1367
Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1368
{
1369
   /* TODO: Use Array ID when it's available for the index */
1370
   return makeSym(dst.getFile(),
1371
                  dst.is2D() ? dst.getIndex(1) : 0,
1372
                  dst.getIndex(0), c,
1373
                  dst.getIndex(0) * 16 + c * 4);
1374
}
1375
 
1376
Symbol *
1377
Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1378
{
1379
   Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1380
 
1381
   sym->reg.fileIndex = fileIdx;
1382
 
1383
   if (idx >= 0) {
1384
      if (sym->reg.file == FILE_SHADER_INPUT)
1385
         sym->setOffset(info->in[idx].slot[c] * 4);
1386
      else
1387
      if (sym->reg.file == FILE_SHADER_OUTPUT)
1388
         sym->setOffset(info->out[idx].slot[c] * 4);
1389
      else
1390
      if (sym->reg.file == FILE_SYSTEM_VALUE)
1391
         sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1392
      else
1393
         sym->setOffset(address);
1394
   } else {
1395
      sym->setOffset(address);
1396
   }
1397
   return sym;
1398
}
1399
 
1400
static inline uint8_t
1401
translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1402
{
1403
   uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1404
 
1405
   if (var->flat)
1406
      mode = NV50_IR_INTERP_FLAT;
1407
   else
1408
   if (var->linear)
1409
      mode = NV50_IR_INTERP_LINEAR;
1410
   else
1411
   if (var->sc)
1412
      mode = NV50_IR_INTERP_SC;
1413
 
1414
   op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1415
      ? OP_PINTERP : OP_LINTERP;
1416
 
1417
   if (var->centroid)
1418
      mode |= NV50_IR_INTERP_CENTROID;
1419
 
1420
   return mode;
1421
}
1422
 
1423
Value *
1424
Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1425
{
1426
   operation op;
1427
 
1428
   // XXX: no way to know interpolation mode if we don't know what's accessed
1429
   const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1430
                                                      src.getIndex(0)], op);
1431
 
1432
   Instruction *insn = new_Instruction(func, op, TYPE_F32);
1433
 
1434
   insn->setDef(0, getScratch());
1435
   insn->setSrc(0, srcToSym(src, c));
1436
   if (op == OP_PINTERP)
1437
      insn->setSrc(1, fragCoord[3]);
1438
   if (ptr)
1439
      insn->setIndirect(0, 0, ptr);
1440
 
1441
   insn->setInterpolate(mode);
1442
 
1443
   bb->insertTail(insn);
1444
   return insn->getDef(0);
1445
}
1446
 
1447
Value *
1448
Converter::applySrcMod(Value *val, int s, int c)
1449
{
1450
   Modifier m = tgsi.getSrc(s).getMod(c);
1451
   DataType ty = tgsi.inferSrcType();
1452
 
1453
   if (m & Modifier(NV50_IR_MOD_ABS))
1454
      val = mkOp1v(OP_ABS, ty, getScratch(), val);
1455
 
1456
   if (m & Modifier(NV50_IR_MOD_NEG))
1457
      val = mkOp1v(OP_NEG, ty, getScratch(), val);
1458
 
1459
   return val;
1460
}
1461
 
1462
Value *
1463
Converter::getVertexBase(int s)
1464
{
1465
   assert(s < 5);
1466
   if (!(vtxBaseValid & (1 << s))) {
1467
      const int index = tgsi.getSrc(s).getIndex(1);
1468
      Value *rel = NULL;
1469
      if (tgsi.getSrc(s).isIndirect(1))
1470
         rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1471
      vtxBaseValid |= 1 << s;
1472
      vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1473
                          mkImm(index), rel);
1474
   }
1475
   return vtxBase[s];
1476
}
1477
 
1478
Value *
1479
Converter::fetchSrc(int s, int c)
1480
{
1481
   Value *res;
1482
   Value *ptr = NULL, *dimRel = NULL;
1483
 
1484
   tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1485
 
1486
   if (src.isIndirect(0))
1487
      ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1488
 
1489
   if (src.is2D()) {
1490
      switch (src.getFile()) {
1491
      case TGSI_FILE_INPUT:
1492
         dimRel = getVertexBase(s);
1493
         break;
1494
      case TGSI_FILE_CONSTANT:
1495
         // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1496
         if (src.isIndirect(1))
1497
            dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1498
         break;
1499
      default:
1500
         break;
1501
      }
1502
   }
1503
 
1504
   res = fetchSrc(src, c, ptr);
1505
 
1506
   if (dimRel)
1507
      res->getInsn()->setIndirect(0, 1, dimRel);
1508
 
1509
   return applySrcMod(res, s, c);
1510
}
1511
 
1512
Converter::DataArray *
1513
Converter::getArrayForFile(unsigned file, int idx)
1514
{
1515
   switch (file) {
1516
   case TGSI_FILE_TEMPORARY:
1517
      return &tData;
1518
   case TGSI_FILE_PREDICATE:
1519
      return &pData;
1520
   case TGSI_FILE_ADDRESS:
1521
      return &aData;
1522
   case TGSI_FILE_OUTPUT:
1523
      assert(prog->getType() == Program::TYPE_FRAGMENT);
1524
      return &oData;
1525
   default:
1526
      assert(!"invalid/unhandled TGSI source file");
1527
      return NULL;
1528
   }
1529
}
1530
 
1531
Value *
1532
Converter::shiftAddress(Value *index)
1533
{
1534
   if (!index)
1535
      return NULL;
1536
   return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1537
}
1538
 
1539
Value *
1540
Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1541
{
1542
   const int idx2d = src.is2D() ? src.getIndex(1) : 0;
1543
   const int idx = src.getIndex(0);
1544
   const int swz = src.getSwizzle(c);
1545
 
1546
   switch (src.getFile()) {
1547
   case TGSI_FILE_IMMEDIATE:
1548
      assert(!ptr);
1549
      return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1550
   case TGSI_FILE_CONSTANT:
1551
      return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1552
   case TGSI_FILE_INPUT:
1553
      if (prog->getType() == Program::TYPE_FRAGMENT) {
1554
         // don't load masked inputs, won't be assigned a slot
1555
         if (!ptr && !(info->in[idx].mask & (1 << swz)))
1556
            return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1557
	 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
1558
            return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
1559
         return interpolate(src, c, shiftAddress(ptr));
1560
      } else
1561
      if (prog->getType() == Program::TYPE_GEOMETRY) {
1562
         if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1563
            return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1564
         // XXX: This is going to be a problem with scalar arrays, i.e. when
1565
         // we cannot assume that the address is given in units of vec4.
1566
         //
1567
         // nv50 and nvc0 need different things here, so let the lowering
1568
         // passes decide what to do with the address
1569
         if (ptr)
1570
            return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1571
      }
1572
      return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1573
   case TGSI_FILE_OUTPUT:
1574
      assert(!"load from output file");
1575
      return NULL;
1576
   case TGSI_FILE_SYSTEM_VALUE:
1577
      assert(!ptr);
1578
      return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1579
   default:
1580
      return getArrayForFile(src.getFile(), idx2d)->load(
1581
         sub.cur->values, idx, swz, shiftAddress(ptr));
1582
   }
1583
}
1584
 
1585
Value *
1586
Converter::acquireDst(int d, int c)
1587
{
1588
   const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1589
   const unsigned f = dst.getFile();
1590
   const int idx = dst.getIndex(0);
1591
   const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1592
 
1593
   if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
1594
      return NULL;
1595
 
1596
   if (dst.isIndirect(0) ||
1597
       f == TGSI_FILE_SYSTEM_VALUE ||
1598
       (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1599
      return getScratch();
1600
 
1601
   return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1602
}
1603
 
1604
void
1605
Converter::storeDst(int d, int c, Value *val)
1606
{
1607
   const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1608
 
1609
   switch (tgsi.getSaturate()) {
1610
   case TGSI_SAT_NONE:
1611
      break;
1612
   case TGSI_SAT_ZERO_ONE:
1613
      mkOp1(OP_SAT, dstTy, val, val);
1614
      break;
1615
   case TGSI_SAT_MINUS_PLUS_ONE:
1616
      mkOp2(OP_MAX, dstTy, val, val, mkImm(-1.0f));
1617
      mkOp2(OP_MIN, dstTy, val, val, mkImm(+1.0f));
1618
      break;
1619
   default:
1620
      assert(!"invalid saturation mode");
1621
      break;
1622
   }
1623
 
1624
   Value *ptr = NULL;
1625
   if (dst.isIndirect(0))
1626
      ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1627
 
1628
   if (info->io.genUserClip > 0 &&
1629
       dst.getFile() == TGSI_FILE_OUTPUT &&
1630
       !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1631
      mkMov(clipVtx[c], val);
1632
      val = clipVtx[c];
1633
   }
1634
 
1635
   storeDst(dst, c, val, ptr);
1636
}
1637
 
1638
void
1639
Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1640
                    Value *val, Value *ptr)
1641
{
1642
   const unsigned f = dst.getFile();
1643
   const int idx = dst.getIndex(0);
1644
   const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1645
 
1646
   if (f == TGSI_FILE_SYSTEM_VALUE) {
1647
      assert(!ptr);
1648
      mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1649
   } else
1650
   if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1651
 
1652
      if (ptr || (info->out[idx].mask & (1 << c))) {
1653
         /* Save the viewport index into a scratch register so that it can be
1654
            exported at EMIT time */
1655
         if (info->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX &&
1656
             viewport != NULL)
1657
            mkOp1(OP_MOV, TYPE_U32, viewport, val);
1658
         else
1659
            mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val);
1660
      }
1661
   } else
1662
   if (f == TGSI_FILE_TEMPORARY ||
1663
       f == TGSI_FILE_PREDICATE ||
1664
       f == TGSI_FILE_ADDRESS ||
1665
       f == TGSI_FILE_OUTPUT) {
1666
      getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1667
   } else {
1668
      assert(!"invalid dst file");
1669
   }
1670
}
1671
 
1672
#define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1673
   for (chan = 0; chan < 4; ++chan)                 \
1674
      if (!inst.getDst(d).isMasked(chan))
1675
 
1676
Value *
1677
Converter::buildDot(int dim)
1678
{
1679
   assert(dim > 0);
1680
 
1681
   Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1682
   Value *dotp = getScratch();
1683
 
1684
   mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1685
 
1686
   for (int c = 1; c < dim; ++c) {
1687
      src0 = fetchSrc(0, c);
1688
      src1 = fetchSrc(1, c);
1689
      mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1690
   }
1691
   return dotp;
1692
}
1693
 
1694
void
1695
Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1696
{
1697
   FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1698
   join->fixed = 1;
1699
   conv->insertHead(join);
1700
 
1701
   fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1702
   fork->insertBefore(fork->getExit(), fork->joinAt);
1703
}
1704
 
1705
void
1706
Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1707
{
1708
   unsigned rIdx = 0, sIdx = 0;
1709
 
1710
   if (R >= 0)
1711
      rIdx = tgsi.getSrc(R).getIndex(0);
1712
   if (S >= 0)
1713
      sIdx = tgsi.getSrc(S).getIndex(0);
1714
 
1715
   tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1716
 
1717
   if (tgsi.getSrc(R).isIndirect(0)) {
1718
      tex->tex.rIndirectSrc = s;
1719
      tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1720
   }
1721
   if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1722
      tex->tex.sIndirectSrc = s;
1723
      tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1724
   }
1725
}
1726
 
1727
void
1728
Converter::handleTXQ(Value *dst0[4], enum TexQuery query)
1729
{
1730
   TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1731
   tex->tex.query = query;
1732
   unsigned int c, d;
1733
 
1734
   for (d = 0, c = 0; c < 4; ++c) {
1735
      if (!dst0[c])
1736
         continue;
1737
      tex->tex.mask |= 1 << c;
1738
      tex->setDef(d++, dst0[c]);
1739
   }
1740
   tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1741
 
1742
   setTexRS(tex, c, 1, -1);
1743
 
1744
   bb->insertTail(tex);
1745
}
1746
 
1747
void
1748
Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1749
{
1750
   Value *proj = fetchSrc(0, 3);
1751
   Instruction *insn = proj->getUniqueInsn();
1752
   int c;
1753
 
1754
   if (insn->op == OP_PINTERP) {
1755
      bb->insertTail(insn = cloneForward(func, insn));
1756
      insn->op = OP_LINTERP;
1757
      insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1758
      insn->setSrc(1, NULL);
1759
      proj = insn->getDef(0);
1760
   }
1761
   proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1762
 
1763
   for (c = 0; c < 4; ++c) {
1764
      if (!(mask & (1 << c)))
1765
         continue;
1766
      if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1767
         continue;
1768
      mask &= ~(1 << c);
1769
 
1770
      bb->insertTail(insn = cloneForward(func, insn));
1771
      insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1772
      insn->setSrc(1, proj);
1773
      dst[c] = insn->getDef(0);
1774
   }
1775
   if (!mask)
1776
      return;
1777
 
1778
   proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1779
 
1780
   for (c = 0; c < 4; ++c)
1781
      if (mask & (1 << c))
1782
         dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1783
}
1784
 
1785
// order of nv50 ir sources: x y z layer lod/bias shadow
1786
// order of TGSI TEX sources: x y z layer shadow lod/bias
1787
//  lowering will finally set the hw specific order (like array first on nvc0)
1788
void
1789
Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1790
{
1791
   Value *val;
1792
   Value *arg[4], *src[8];
1793
   Value *lod = NULL, *shd = NULL;
1794
   unsigned int s, c, d;
1795
   TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1796
 
1797
   TexInstruction::Target tgt = tgsi.getTexture(code, R);
1798
 
1799
   for (s = 0; s < tgt.getArgCount(); ++s)
1800
      arg[s] = src[s] = fetchSrc(0, s);
1801
 
1802
   if (texi->op == OP_TXL || texi->op == OP_TXB)
1803
      lod = fetchSrc(L >> 4, L & 3);
1804
 
1805
   if (C == 0x0f)
1806
      C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1807
 
1808
   if (tgsi.getOpcode() == TGSI_OPCODE_TG4 &&
1809
       tgt == TEX_TARGET_CUBE_ARRAY_SHADOW)
1810
      shd = fetchSrc(1, 0);
1811
   else if (tgt.isShadow())
1812
      shd = fetchSrc(C >> 4, C & 3);
1813
 
1814
   if (texi->op == OP_TXD) {
1815
      for (c = 0; c < tgt.getDim(); ++c) {
1816
         texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1817
         texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1818
      }
1819
   }
1820
 
1821
   // cube textures don't care about projection value, it's divided out
1822
   if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1823
      unsigned int n = tgt.getDim();
1824
      if (shd) {
1825
         arg[n] = shd;
1826
         ++n;
1827
         assert(tgt.getDim() == tgt.getArgCount());
1828
      }
1829
      loadProjTexCoords(src, arg, (1 << n) - 1);
1830
      if (shd)
1831
         shd = src[n - 1];
1832
   }
1833
 
1834
   if (tgt.isCube()) {
1835
      for (c = 0; c < 3; ++c)
1836
         src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1837
      val = getScratch();
1838
      mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1839
      mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1840
      mkOp1(OP_RCP, TYPE_F32, val, val);
1841
      for (c = 0; c < 3; ++c)
1842
         src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1843
   }
1844
 
1845
   for (c = 0, d = 0; c < 4; ++c) {
1846
      if (dst[c]) {
1847
         texi->setDef(d++, dst[c]);
1848
         texi->tex.mask |= 1 << c;
1849
      } else {
1850
         // NOTE: maybe hook up def too, for CSE
1851
      }
1852
   }
1853
   for (s = 0; s < tgt.getArgCount(); ++s)
1854
      texi->setSrc(s, src[s]);
1855
   if (lod)
1856
      texi->setSrc(s++, lod);
1857
   if (shd)
1858
      texi->setSrc(s++, shd);
1859
 
1860
   setTexRS(texi, s, R, S);
1861
 
1862
   if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
1863
      texi->tex.levelZero = true;
1864
   if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
1865
      texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info);
1866
 
1867
   texi->tex.useOffsets = tgsi.getNumTexOffsets();
1868
   for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1869
      for (c = 0; c < 3; ++c) {
1870
         texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1871
         texi->offset[s][c].setInsn(texi);
1872
      }
1873
   }
1874
 
1875
   bb->insertTail(texi);
1876
}
1877
 
1878
// 1st source: xyz = coordinates, w = lod/sample
1879
// 2nd source: offset
1880
void
1881
Converter::handleTXF(Value *dst[4], int R, int L_M)
1882
{
1883
   TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1884
   int ms;
1885
   unsigned int c, d, s;
1886
 
1887
   texi->tex.target = tgsi.getTexture(code, R);
1888
 
1889
   ms = texi->tex.target.isMS() ? 1 : 0;
1890
   texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
1891
 
1892
   for (c = 0, d = 0; c < 4; ++c) {
1893
      if (dst[c]) {
1894
         texi->setDef(d++, dst[c]);
1895
         texi->tex.mask |= 1 << c;
1896
      }
1897
   }
1898
   for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
1899
      texi->setSrc(c, fetchSrc(0, c));
1900
   texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
1901
 
1902
   setTexRS(texi, c, R, -1);
1903
 
1904
   texi->tex.useOffsets = tgsi.getNumTexOffsets();
1905
   for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1906
      for (c = 0; c < 3; ++c) {
1907
         texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1908
         texi->offset[s][c].setInsn(texi);
1909
      }
1910
   }
1911
 
1912
   bb->insertTail(texi);
1913
}
1914
 
1915
void
1916
Converter::handleLIT(Value *dst0[4])
1917
{
1918
   Value *val0 = NULL;
1919
   unsigned int mask = tgsi.getDst(0).getMask();
1920
 
1921
   if (mask & (1 << 0))
1922
      loadImm(dst0[0], 1.0f);
1923
 
1924
   if (mask & (1 << 3))
1925
      loadImm(dst0[3], 1.0f);
1926
 
1927
   if (mask & (3 << 1)) {
1928
      val0 = getScratch();
1929
      mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
1930
      if (mask & (1 << 1))
1931
         mkMov(dst0[1], val0);
1932
   }
1933
 
1934
   if (mask & (1 << 2)) {
1935
      Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
1936
      Value *val1 = getScratch(), *val3 = getScratch();
1937
 
1938
      Value *pos128 = loadImm(NULL, +127.999999f);
1939
      Value *neg128 = loadImm(NULL, -127.999999f);
1940
 
1941
      mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
1942
      mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
1943
      mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
1944
      mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
1945
 
1946
      mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
1947
   }
1948
}
1949
 
1950
static inline bool
1951
isResourceSpecial(const int r)
1952
{
1953
   return (r == TGSI_RESOURCE_GLOBAL ||
1954
           r == TGSI_RESOURCE_LOCAL ||
1955
           r == TGSI_RESOURCE_PRIVATE ||
1956
           r == TGSI_RESOURCE_INPUT);
1957
}
1958
 
1959
static inline bool
1960
isResourceRaw(const tgsi::Source *code, const int r)
1961
{
1962
   return isResourceSpecial(r) || code->resources[r].raw;
1963
}
1964
 
1965
static inline nv50_ir::TexTarget
1966
getResourceTarget(const tgsi::Source *code, int r)
1967
{
1968
   if (isResourceSpecial(r))
1969
      return nv50_ir::TEX_TARGET_BUFFER;
1970
   return tgsi::translateTexture(code->resources.at(r).target);
1971
}
1972
 
1973
Symbol *
1974
Converter::getResourceBase(const int r)
1975
{
1976
   Symbol *sym = NULL;
1977
 
1978
   switch (r) {
1979
   case TGSI_RESOURCE_GLOBAL:
1980
      sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
1981
      break;
1982
   case TGSI_RESOURCE_LOCAL:
1983
      assert(prog->getType() == Program::TYPE_COMPUTE);
1984
      sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
1985
                     info->prop.cp.sharedOffset);
1986
      break;
1987
   case TGSI_RESOURCE_PRIVATE:
1988
      sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
1989
                     info->bin.tlsSpace);
1990
      break;
1991
   case TGSI_RESOURCE_INPUT:
1992
      assert(prog->getType() == Program::TYPE_COMPUTE);
1993
      sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
1994
                     info->prop.cp.inputOffset);
1995
      break;
1996
   default:
1997
      sym = new_Symbol(prog,
1998
                       nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
1999
      break;
2000
   }
2001
   return sym;
2002
}
2003
 
2004
void
2005
Converter::getResourceCoords(std::vector &coords, int r, int s)
2006
{
2007
   const int arg =
2008
      TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
2009
 
2010
   for (int c = 0; c < arg; ++c)
2011
      coords.push_back(fetchSrc(s, c));
2012
 
2013
   // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
2014
   if (r == TGSI_RESOURCE_LOCAL ||
2015
       r == TGSI_RESOURCE_PRIVATE ||
2016
       r == TGSI_RESOURCE_INPUT)
2017
      coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
2018
                         coords[0]);
2019
}
2020
 
2021
static inline int
2022
partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
2023
{
2024
   int n = 0;
2025
 
2026
   while (mask) {
2027
      if (mask & 1) {
2028
         size[n]++;
2029
      } else {
2030
         if (size[n])
2031
            comp[n = 1] = size[0] + 1;
2032
         else
2033
            comp[n]++;
2034
      }
2035
      mask >>= 1;
2036
   }
2037
   if (size[0] == 3) {
2038
      n = 1;
2039
      size[0] = (comp[0] == 1) ? 1 : 2;
2040
      size[1] = 3 - size[0];
2041
      comp[1] = comp[0] + size[0];
2042
   }
2043
   return n + 1;
2044
}
2045
 
2046
// For raw loads, granularity is 4 byte.
2047
// Usage of the texture read mask on OP_SULDP is not allowed.
2048
void
2049
Converter::handleLOAD(Value *dst0[4])
2050
{
2051
   const int r = tgsi.getSrc(0).getIndex(0);
2052
   int c;
2053
   std::vector off, src, ldv, def;
2054
 
2055
   getResourceCoords(off, r, 1);
2056
 
2057
   if (isResourceRaw(code, r)) {
2058
      uint8_t mask = 0;
2059
      uint8_t comp[2] = { 0, 0 };
2060
      uint8_t size[2] = { 0, 0 };
2061
 
2062
      Symbol *base = getResourceBase(r);
2063
 
2064
      // determine the base and size of the at most 2 load ops
2065
      for (c = 0; c < 4; ++c)
2066
         if (!tgsi.getDst(0).isMasked(c))
2067
            mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
2068
 
2069
      int n = partitionLoadStore(comp, size, mask);
2070
 
2071
      src = off;
2072
 
2073
      def.resize(4); // index by component, the ones we need will be non-NULL
2074
      for (c = 0; c < 4; ++c) {
2075
         if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
2076
            def[c] = dst0[c];
2077
         else
2078
         if (mask & (1 << c))
2079
            def[c] = getScratch();
2080
      }
2081
 
2082
      const bool useLd = isResourceSpecial(r) ||
2083
         (info->io.nv50styleSurfaces &&
2084
          code->resources[r].target == TGSI_TEXTURE_BUFFER);
2085
 
2086
      for (int i = 0; i < n; ++i) {
2087
         ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
2088
 
2089
         if (comp[i]) // adjust x component of source address if necessary
2090
            src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2091
                            off[0], mkImm(comp[i] * 4));
2092
         else
2093
            src[0] = off[0];
2094
 
2095
         if (useLd) {
2096
            Instruction *ld =
2097
               mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
2098
            for (size_t c = 1; c < ldv.size(); ++c)
2099
               ld->setDef(c, ldv[c]);
2100
         } else {
2101
            mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2102
                  0, ldv, src)->dType = typeOfSize(size[i] * 4);
2103
         }
2104
      }
2105
   } else {
2106
      def.resize(4);
2107
      for (c = 0; c < 4; ++c) {
2108
         if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2109
            def[c] = getScratch();
2110
         else
2111
            def[c] = dst0[c];
2112
      }
2113
 
2114
      mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2115
            def, off);
2116
   }
2117
   FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2118
      if (dst0[c] != def[c])
2119
         mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2120
}
2121
 
2122
// For formatted stores, the write mask on OP_SUSTP can be used.
2123
// Raw stores have to be split.
2124
void
2125
Converter::handleSTORE()
2126
{
2127
   const int r = tgsi.getDst(0).getIndex(0);
2128
   int c;
2129
   std::vector off, src, dummy;
2130
 
2131
   getResourceCoords(off, r, 0);
2132
   src = off;
2133
   const int s = src.size();
2134
 
2135
   if (isResourceRaw(code, r)) {
2136
      uint8_t comp[2] = { 0, 0 };
2137
      uint8_t size[2] = { 0, 0 };
2138
 
2139
      int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2140
 
2141
      Symbol *base = getResourceBase(r);
2142
 
2143
      const bool useSt = isResourceSpecial(r) ||
2144
         (info->io.nv50styleSurfaces &&
2145
          code->resources[r].target == TGSI_TEXTURE_BUFFER);
2146
 
2147
      for (int i = 0; i < n; ++i) {
2148
         if (comp[i]) // adjust x component of source address if necessary
2149
            src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2150
                            off[0], mkImm(comp[i] * 4));
2151
         else
2152
            src[0] = off[0];
2153
 
2154
         const DataType stTy = typeOfSize(size[i] * 4);
2155
 
2156
         if (useSt) {
2157
            Instruction *st =
2158
               mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2159
            for (c = 1; c < size[i]; ++c)
2160
               st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2161
            st->setIndirect(0, 0, src[0]);
2162
         } else {
2163
            // attach values to be stored
2164
            src.resize(s + size[i]);
2165
            for (c = 0; c < size[i]; ++c)
2166
               src[s + c] = fetchSrc(1, comp[i] + c);
2167
            mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2168
                  0, dummy, src)->setType(stTy);
2169
         }
2170
      }
2171
   } else {
2172
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2173
         src.push_back(fetchSrc(1, c));
2174
 
2175
      mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2176
            dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2177
   }
2178
}
2179
 
2180
// XXX: These only work on resources with the single-component u32/s32 formats.
2181
// Therefore the result is replicated. This might not be intended by TGSI, but
2182
// operating on more than 1 component would produce undefined results because
2183
// they do not exist.
2184
void
2185
Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2186
{
2187
   const int r = tgsi.getSrc(0).getIndex(0);
2188
   std::vector srcv;
2189
   std::vector defv;
2190
   LValue *dst = getScratch();
2191
 
2192
   getResourceCoords(srcv, r, 1);
2193
 
2194
   if (isResourceSpecial(r)) {
2195
      assert(r != TGSI_RESOURCE_INPUT);
2196
      Instruction *insn;
2197
      insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2198
      insn->subOp = subOp;
2199
      if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2200
         insn->setSrc(2, fetchSrc(3, 0));
2201
      insn->setIndirect(0, 0, srcv.at(0));
2202
   } else {
2203
      operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2204
      TexTarget targ = getResourceTarget(code, r);
2205
      int idx = code->resources[r].slot;
2206
      defv.push_back(dst);
2207
      srcv.push_back(fetchSrc(2, 0));
2208
      if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2209
         srcv.push_back(fetchSrc(3, 0));
2210
      TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2211
      tex->subOp = subOp;
2212
      tex->tex.mask = 1;
2213
      tex->setType(ty);
2214
   }
2215
 
2216
   for (int c = 0; c < 4; ++c)
2217
      if (dst0[c])
2218
         dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2219
}
2220
 
2221
void
2222
Converter::handleINTERP(Value *dst[4])
2223
{
2224
   // Check whether the input is linear. All other attributes ignored.
2225
   Instruction *insn;
2226
   Value *offset = NULL, *ptr = NULL, *w = NULL;
2227
   bool linear;
2228
   operation op;
2229
   int c, mode;
2230
 
2231
   tgsi::Instruction::SrcRegister src = tgsi.getSrc(0);
2232
   assert(src.getFile() == TGSI_FILE_INPUT);
2233
 
2234
   if (src.isIndirect(0))
2235
      ptr = fetchSrc(src.getIndirect(0), 0, NULL);
2236
 
2237
   // XXX: no way to know interp mode if we don't know the index
2238
   linear = info->in[ptr ? 0 : src.getIndex(0)].linear;
2239
   if (linear) {
2240
      op = OP_LINTERP;
2241
      mode = NV50_IR_INTERP_LINEAR;
2242
   } else {
2243
      op = OP_PINTERP;
2244
      mode = NV50_IR_INTERP_PERSPECTIVE;
2245
   }
2246
 
2247
   switch (tgsi.getOpcode()) {
2248
   case TGSI_OPCODE_INTERP_CENTROID:
2249
      mode |= NV50_IR_INTERP_CENTROID;
2250
      break;
2251
   case TGSI_OPCODE_INTERP_SAMPLE:
2252
      insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), fetchSrc(1, 0));
2253
      insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
2254
      mode |= NV50_IR_INTERP_OFFSET;
2255
      break;
2256
   case TGSI_OPCODE_INTERP_OFFSET: {
2257
      // The input in src1.xy is float, but we need a single 32-bit value
2258
      // where the upper and lower 16 bits are encoded in S0.12 format. We need
2259
      // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096,
2260
      // and then convert to s32.
2261
      Value *offs[2];
2262
      for (c = 0; c < 2; c++) {
2263
         offs[c] = fetchSrc(1, c);
2264
         mkOp2(OP_MIN, TYPE_F32, offs[c], offs[c], loadImm(NULL, 0.4375f));
2265
         mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
2266
         mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
2267
         mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
2268
      }
2269
      offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(),
2270
                      offs[1], mkImm(0x1010), offs[0]);
2271
      mode |= NV50_IR_INTERP_OFFSET;
2272
      break;
2273
   }
2274
   }
2275
 
2276
   if (op == OP_PINTERP) {
2277
      if (offset) {
2278
         w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset);
2279
         mkOp1(OP_RCP, TYPE_F32, w, w);
2280
      } else {
2281
         w = fragCoord[3];
2282
      }
2283
   }
2284
 
2285
 
2286
   FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2287
      insn = mkOp1(op, TYPE_F32, dst[c], srcToSym(src, c));
2288
      if (op == OP_PINTERP)
2289
         insn->setSrc(1, w);
2290
      if (ptr)
2291
         insn->setIndirect(0, 0, ptr);
2292
      if (offset)
2293
         insn->setSrc(op == OP_PINTERP ? 2 : 1, offset);
2294
 
2295
      insn->setInterpolate(mode);
2296
   }
2297
}
2298
 
2299
Converter::Subroutine *
2300
Converter::getSubroutine(unsigned ip)
2301
{
2302
   std::map::iterator it = sub.map.find(ip);
2303
 
2304
   if (it == sub.map.end())
2305
      it = sub.map.insert(std::make_pair(
2306
              ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2307
 
2308
   return &it->second;
2309
}
2310
 
2311
Converter::Subroutine *
2312
Converter::getSubroutine(Function *f)
2313
{
2314
   unsigned ip = f->getLabel();
2315
   std::map::iterator it = sub.map.find(ip);
2316
 
2317
   if (it == sub.map.end())
2318
      it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2319
 
2320
   return &it->second;
2321
}
2322
 
2323
bool
2324
Converter::isEndOfSubroutine(uint ip)
2325
{
2326
   assert(ip < code->scan.num_instructions);
2327
   tgsi::Instruction insn(&code->insns[ip]);
2328
   return (insn.getOpcode() == TGSI_OPCODE_END ||
2329
           insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2330
           // does END occur at end of main or the very end ?
2331
           insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2332
}
2333
 
2334
bool
2335
Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2336
{
2337
   Instruction *geni;
2338
 
2339
   Value *dst0[4], *rDst0[4];
2340
   Value *src0, *src1, *src2, *src3;
2341
   Value *val0, *val1;
2342
   int c;
2343
 
2344
   tgsi = tgsi::Instruction(insn);
2345
 
2346
   bool useScratchDst = tgsi.checkDstSrcAliasing();
2347
 
2348
   operation op = tgsi.getOP();
2349
   dstTy = tgsi.inferDstType();
2350
   srcTy = tgsi.inferSrcType();
2351
 
2352
   unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2353
 
2354
   if (tgsi.dstCount()) {
2355
      for (c = 0; c < 4; ++c) {
2356
         rDst0[c] = acquireDst(0, c);
2357
         dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2358
      }
2359
   }
2360
 
2361
   switch (tgsi.getOpcode()) {
2362
   case TGSI_OPCODE_ADD:
2363
   case TGSI_OPCODE_UADD:
2364
   case TGSI_OPCODE_AND:
2365
   case TGSI_OPCODE_DIV:
2366
   case TGSI_OPCODE_IDIV:
2367
   case TGSI_OPCODE_UDIV:
2368
   case TGSI_OPCODE_MAX:
2369
   case TGSI_OPCODE_MIN:
2370
   case TGSI_OPCODE_IMAX:
2371
   case TGSI_OPCODE_IMIN:
2372
   case TGSI_OPCODE_UMAX:
2373
   case TGSI_OPCODE_UMIN:
2374
   case TGSI_OPCODE_MOD:
2375
   case TGSI_OPCODE_UMOD:
2376
   case TGSI_OPCODE_MUL:
2377
   case TGSI_OPCODE_UMUL:
2378
   case TGSI_OPCODE_IMUL_HI:
2379
   case TGSI_OPCODE_UMUL_HI:
2380
   case TGSI_OPCODE_OR:
2381
   case TGSI_OPCODE_SHL:
2382
   case TGSI_OPCODE_ISHR:
2383
   case TGSI_OPCODE_USHR:
2384
   case TGSI_OPCODE_SUB:
2385
   case TGSI_OPCODE_XOR:
2386
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2387
         src0 = fetchSrc(0, c);
2388
         src1 = fetchSrc(1, c);
2389
         geni = mkOp2(op, dstTy, dst0[c], src0, src1);
2390
         geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2391
      }
2392
      break;
2393
   case TGSI_OPCODE_MAD:
2394
   case TGSI_OPCODE_UMAD:
2395
   case TGSI_OPCODE_SAD:
2396
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2397
         src0 = fetchSrc(0, c);
2398
         src1 = fetchSrc(1, c);
2399
         src2 = fetchSrc(2, c);
2400
         mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2401
      }
2402
      break;
2403
   case TGSI_OPCODE_MOV:
2404
   case TGSI_OPCODE_ABS:
2405
   case TGSI_OPCODE_CEIL:
2406
   case TGSI_OPCODE_FLR:
2407
   case TGSI_OPCODE_TRUNC:
2408
   case TGSI_OPCODE_RCP:
2409
   case TGSI_OPCODE_IABS:
2410
   case TGSI_OPCODE_INEG:
2411
   case TGSI_OPCODE_NOT:
2412
   case TGSI_OPCODE_DDX:
2413
   case TGSI_OPCODE_DDY:
2414
   case TGSI_OPCODE_DDX_FINE:
2415
   case TGSI_OPCODE_DDY_FINE:
2416
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2417
         mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2418
      break;
2419
   case TGSI_OPCODE_RSQ:
2420
      src0 = fetchSrc(0, 0);
2421
      val0 = getScratch();
2422
      mkOp1(OP_ABS, TYPE_F32, val0, src0);
2423
      mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2424
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2425
         mkMov(dst0[c], val0);
2426
      break;
2427
   case TGSI_OPCODE_ARL:
2428
   case TGSI_OPCODE_ARR:
2429
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2430
         const RoundMode rnd =
2431
            tgsi.getOpcode() == TGSI_OPCODE_ARR ? ROUND_N : ROUND_M;
2432
         src0 = fetchSrc(0, c);
2433
         mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = rnd;
2434
      }
2435
      break;
2436
   case TGSI_OPCODE_UARL:
2437
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2438
         mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2439
      break;
2440
   case TGSI_OPCODE_POW:
2441
      val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
2442
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2443
         mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2444
      break;
2445
   case TGSI_OPCODE_EX2:
2446
   case TGSI_OPCODE_LG2:
2447
      val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2448
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2449
         mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2450
      break;
2451
   case TGSI_OPCODE_COS:
2452
   case TGSI_OPCODE_SIN:
2453
      val0 = getScratch();
2454
      if (mask & 7) {
2455
         mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2456
         mkOp1(op, TYPE_F32, val0, val0);
2457
         for (c = 0; c < 3; ++c)
2458
            if (dst0[c])
2459
               mkMov(dst0[c], val0);
2460
      }
2461
      if (dst0[3]) {
2462
         mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2463
         mkOp1(op, TYPE_F32, dst0[3], val0);
2464
      }
2465
      break;
2466
   case TGSI_OPCODE_SCS:
2467
      if (mask & 3) {
2468
         val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2469
         if (dst0[0])
2470
            mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2471
         if (dst0[1])
2472
            mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2473
      }
2474
      if (dst0[2])
2475
         loadImm(dst0[2], 0.0f);
2476
      if (dst0[3])
2477
         loadImm(dst0[3], 1.0f);
2478
      break;
2479
   case TGSI_OPCODE_EXP:
2480
      src0 = fetchSrc(0, 0);
2481
      val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2482
      if (dst0[1])
2483
         mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2484
      if (dst0[0])
2485
         mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2486
      if (dst0[2])
2487
         mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2488
      if (dst0[3])
2489
         loadImm(dst0[3], 1.0f);
2490
      break;
2491
   case TGSI_OPCODE_LOG:
2492
      src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2493
      val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2494
      if (dst0[0] || dst0[1])
2495
         val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2496
      if (dst0[1]) {
2497
         mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2498
         mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2499
         mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2500
      }
2501
      if (dst0[3])
2502
         loadImm(dst0[3], 1.0f);
2503
      break;
2504
   case TGSI_OPCODE_DP2:
2505
      val0 = buildDot(2);
2506
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2507
         mkMov(dst0[c], val0);
2508
      break;
2509
   case TGSI_OPCODE_DP3:
2510
      val0 = buildDot(3);
2511
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2512
         mkMov(dst0[c], val0);
2513
      break;
2514
   case TGSI_OPCODE_DP4:
2515
      val0 = buildDot(4);
2516
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2517
         mkMov(dst0[c], val0);
2518
      break;
2519
   case TGSI_OPCODE_DPH:
2520
      val0 = buildDot(3);
2521
      src1 = fetchSrc(1, 3);
2522
      mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2523
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2524
         mkMov(dst0[c], val0);
2525
      break;
2526
   case TGSI_OPCODE_DST:
2527
      if (dst0[0])
2528
         loadImm(dst0[0], 1.0f);
2529
      if (dst0[1]) {
2530
         src0 = fetchSrc(0, 1);
2531
         src1 = fetchSrc(1, 1);
2532
         mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2533
      }
2534
      if (dst0[2])
2535
         mkMov(dst0[2], fetchSrc(0, 2));
2536
      if (dst0[3])
2537
         mkMov(dst0[3], fetchSrc(1, 3));
2538
      break;
2539
   case TGSI_OPCODE_LRP:
2540
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2541
         src0 = fetchSrc(0, c);
2542
         src1 = fetchSrc(1, c);
2543
         src2 = fetchSrc(2, c);
2544
         mkOp3(OP_MAD, TYPE_F32, dst0[c],
2545
               mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2546
      }
2547
      break;
2548
   case TGSI_OPCODE_LIT:
2549
      handleLIT(dst0);
2550
      break;
2551
   case TGSI_OPCODE_XPD:
2552
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2553
         if (c < 3) {
2554
            val0 = getSSA();
2555
            src0 = fetchSrc(1, (c + 1) % 3);
2556
            src1 = fetchSrc(0, (c + 2) % 3);
2557
            mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2558
            mkOp1(OP_NEG, TYPE_F32, val0, val0);
2559
 
2560
            src0 = fetchSrc(0, (c + 1) % 3);
2561
            src1 = fetchSrc(1, (c + 2) % 3);
2562
            mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2563
         } else {
2564
            loadImm(dst0[c], 1.0f);
2565
         }
2566
      }
2567
      break;
2568
   case TGSI_OPCODE_ISSG:
2569
   case TGSI_OPCODE_SSG:
2570
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2571
         src0 = fetchSrc(0, c);
2572
         val0 = getScratch();
2573
         val1 = getScratch();
2574
         mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2575
         mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2576
         if (srcTy == TYPE_F32)
2577
            mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2578
         else
2579
            mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2580
      }
2581
      break;
2582
   case TGSI_OPCODE_UCMP:
2583
   case TGSI_OPCODE_CMP:
2584
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2585
         src0 = fetchSrc(0, c);
2586
         src1 = fetchSrc(1, c);
2587
         src2 = fetchSrc(2, c);
2588
         if (src1 == src2)
2589
            mkMov(dst0[c], src1);
2590
         else
2591
            mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2592
                  srcTy, dst0[c], srcTy, src1, src2, src0);
2593
      }
2594
      break;
2595
   case TGSI_OPCODE_FRC:
2596
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2597
         src0 = fetchSrc(0, c);
2598
         val0 = getScratch();
2599
         mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2600
         mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2601
      }
2602
      break;
2603
   case TGSI_OPCODE_ROUND:
2604
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2605
         mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2606
         ->rnd = ROUND_NI;
2607
      break;
2608
   case TGSI_OPCODE_CLAMP:
2609
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2610
         src0 = fetchSrc(0, c);
2611
         src1 = fetchSrc(1, c);
2612
         src2 = fetchSrc(2, c);
2613
         val0 = getScratch();
2614
         mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2615
         mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2616
      }
2617
      break;
2618
   case TGSI_OPCODE_SLT:
2619
   case TGSI_OPCODE_SGE:
2620
   case TGSI_OPCODE_SEQ:
2621
   case TGSI_OPCODE_SGT:
2622
   case TGSI_OPCODE_SLE:
2623
   case TGSI_OPCODE_SNE:
2624
   case TGSI_OPCODE_FSEQ:
2625
   case TGSI_OPCODE_FSGE:
2626
   case TGSI_OPCODE_FSLT:
2627
   case TGSI_OPCODE_FSNE:
2628
   case TGSI_OPCODE_ISGE:
2629
   case TGSI_OPCODE_ISLT:
2630
   case TGSI_OPCODE_USEQ:
2631
   case TGSI_OPCODE_USGE:
2632
   case TGSI_OPCODE_USLT:
2633
   case TGSI_OPCODE_USNE:
2634
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2635
         src0 = fetchSrc(0, c);
2636
         src1 = fetchSrc(1, c);
2637
         mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2638
      }
2639
      break;
2640
   case TGSI_OPCODE_KILL_IF:
2641
      val0 = new_LValue(func, FILE_PREDICATE);
2642
      mask = 0;
2643
      for (c = 0; c < 4; ++c) {
2644
         const int s = tgsi.getSrc(0).getSwizzle(c);
2645
         if (mask & (1 << s))
2646
            continue;
2647
         mask |= 1 << s;
2648
         mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2649
         mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2650
      }
2651
      break;
2652
   case TGSI_OPCODE_KILL:
2653
      mkOp(OP_DISCARD, TYPE_NONE, NULL);
2654
      break;
2655
   case TGSI_OPCODE_TEX:
2656
   case TGSI_OPCODE_TXB:
2657
   case TGSI_OPCODE_TXL:
2658
   case TGSI_OPCODE_TXP:
2659
   case TGSI_OPCODE_LODQ:
2660
      //              R  S     L     C    Dx    Dy
2661
      handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2662
      break;
2663
   case TGSI_OPCODE_TXD:
2664
      handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2665
      break;
2666
   case TGSI_OPCODE_TG4:
2667
      handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
2668
      break;
2669
   case TGSI_OPCODE_TEX2:
2670
      handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2671
      break;
2672
   case TGSI_OPCODE_TXB2:
2673
   case TGSI_OPCODE_TXL2:
2674
      handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00);
2675
      break;
2676
   case TGSI_OPCODE_SAMPLE:
2677
   case TGSI_OPCODE_SAMPLE_B:
2678
   case TGSI_OPCODE_SAMPLE_D:
2679
   case TGSI_OPCODE_SAMPLE_L:
2680
   case TGSI_OPCODE_SAMPLE_C:
2681
   case TGSI_OPCODE_SAMPLE_C_LZ:
2682
      handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2683
      break;
2684
   case TGSI_OPCODE_TXF:
2685
      handleTXF(dst0, 1, 0x03);
2686
      break;
2687
   case TGSI_OPCODE_SAMPLE_I:
2688
      handleTXF(dst0, 1, 0x03);
2689
      break;
2690
   case TGSI_OPCODE_SAMPLE_I_MS:
2691
      handleTXF(dst0, 1, 0x20);
2692
      break;
2693
   case TGSI_OPCODE_TXQ:
2694
   case TGSI_OPCODE_SVIEWINFO:
2695
      handleTXQ(dst0, TXQ_DIMS);
2696
      break;
2697
   case TGSI_OPCODE_F2I:
2698
   case TGSI_OPCODE_F2U:
2699
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2700
         mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2701
      break;
2702
   case TGSI_OPCODE_I2F:
2703
   case TGSI_OPCODE_U2F:
2704
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2705
         mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2706
      break;
2707
   case TGSI_OPCODE_EMIT:
2708
      /* export the saved viewport index */
2709
      if (viewport != NULL) {
2710
         Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32,
2711
                                  info->out[info->io.viewportId].slot[0] * 4);
2712
         mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport);
2713
      }
2714
      /* fallthrough */
2715
   case TGSI_OPCODE_ENDPRIM:
2716
   {
2717
      // get vertex stream (must be immediate)
2718
      unsigned int stream = tgsi.getSrc(0).getValueU32(0, info);
2719
      if (stream && op == OP_RESTART)
2720
         break;
2721
      src0 = mkImm(stream);
2722
      mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2723
      break;
2724
   }
2725
   case TGSI_OPCODE_IF:
2726
   case TGSI_OPCODE_UIF:
2727
   {
2728
      BasicBlock *ifBB = new BasicBlock(func);
2729
 
2730
      bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2731
      condBBs.push(bb);
2732
      joinBBs.push(bb);
2733
 
2734
      mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
2735
 
2736
      setPosition(ifBB, true);
2737
   }
2738
      break;
2739
   case TGSI_OPCODE_ELSE:
2740
   {
2741
      BasicBlock *elseBB = new BasicBlock(func);
2742
      BasicBlock *forkBB = reinterpret_cast(condBBs.pop().u.p);
2743
 
2744
      forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2745
      condBBs.push(bb);
2746
 
2747
      forkBB->getExit()->asFlow()->target.bb = elseBB;
2748
      if (!bb->isTerminated())
2749
         mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2750
 
2751
      setPosition(elseBB, true);
2752
   }
2753
      break;
2754
   case TGSI_OPCODE_ENDIF:
2755
   {
2756
      BasicBlock *convBB = new BasicBlock(func);
2757
      BasicBlock *prevBB = reinterpret_cast(condBBs.pop().u.p);
2758
      BasicBlock *forkBB = reinterpret_cast(joinBBs.pop().u.p);
2759
 
2760
      if (!bb->isTerminated()) {
2761
         // we only want join if none of the clauses ended with CONT/BREAK/RET
2762
         if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2763
            insertConvergenceOps(convBB, forkBB);
2764
         mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2765
         bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2766
      }
2767
 
2768
      if (prevBB->getExit()->op == OP_BRA) {
2769
         prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2770
         prevBB->getExit()->asFlow()->target.bb = convBB;
2771
      }
2772
      setPosition(convBB, true);
2773
   }
2774
      break;
2775
   case TGSI_OPCODE_BGNLOOP:
2776
   {
2777
      BasicBlock *lbgnBB = new BasicBlock(func);
2778
      BasicBlock *lbrkBB = new BasicBlock(func);
2779
 
2780
      loopBBs.push(lbgnBB);
2781
      breakBBs.push(lbrkBB);
2782
      if (loopBBs.getSize() > func->loopNestingBound)
2783
         func->loopNestingBound++;
2784
 
2785
      mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2786
 
2787
      bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2788
      setPosition(lbgnBB, true);
2789
      mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2790
   }
2791
      break;
2792
   case TGSI_OPCODE_ENDLOOP:
2793
   {
2794
      BasicBlock *loopBB = reinterpret_cast(loopBBs.pop().u.p);
2795
 
2796
      if (!bb->isTerminated()) {
2797
         mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2798
         bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2799
      }
2800
      setPosition(reinterpret_cast(breakBBs.pop().u.p), true);
2801
   }
2802
      break;
2803
   case TGSI_OPCODE_BRK:
2804
   {
2805
      if (bb->isTerminated())
2806
         break;
2807
      BasicBlock *brkBB = reinterpret_cast(breakBBs.peek().u.p);
2808
      mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2809
      bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2810
   }
2811
      break;
2812
   case TGSI_OPCODE_CONT:
2813
   {
2814
      if (bb->isTerminated())
2815
         break;
2816
      BasicBlock *contBB = reinterpret_cast(loopBBs.peek().u.p);
2817
      mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2818
      contBB->explicitCont = true;
2819
      bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2820
   }
2821
      break;
2822
   case TGSI_OPCODE_BGNSUB:
2823
   {
2824
      Subroutine *s = getSubroutine(ip);
2825
      BasicBlock *entry = new BasicBlock(s->f);
2826
      BasicBlock *leave = new BasicBlock(s->f);
2827
 
2828
      // multiple entrypoints possible, keep the graph connected
2829
      if (prog->getType() == Program::TYPE_COMPUTE)
2830
         prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
2831
 
2832
      sub.cur = s;
2833
      s->f->setEntry(entry);
2834
      s->f->setExit(leave);
2835
      setPosition(entry, true);
2836
      return true;
2837
   }
2838
   case TGSI_OPCODE_ENDSUB:
2839
   {
2840
      sub.cur = getSubroutine(prog->main);
2841
      setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
2842
      return true;
2843
   }
2844
   case TGSI_OPCODE_CAL:
2845
   {
2846
      Subroutine *s = getSubroutine(tgsi.getLabel());
2847
      mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
2848
      func->call.attach(&s->f->call, Graph::Edge::TREE);
2849
      return true;
2850
   }
2851
   case TGSI_OPCODE_RET:
2852
   {
2853
      if (bb->isTerminated())
2854
         return true;
2855
      BasicBlock *leave = BasicBlock::get(func->cfgExit);
2856
 
2857
      if (!isEndOfSubroutine(ip + 1)) {
2858
         // insert a PRERET at the entry if this is an early return
2859
         // (only needed for sharing code in the epilogue)
2860
         BasicBlock *pos = getBB();
2861
         setPosition(BasicBlock::get(func->cfg.getRoot()), false);
2862
         mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
2863
         setPosition(pos, true);
2864
      }
2865
      mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
2866
      bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
2867
   }
2868
      break;
2869
   case TGSI_OPCODE_END:
2870
   {
2871
      // attach and generate epilogue code
2872
      BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
2873
      bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
2874
      setPosition(epilogue, true);
2875
      if (prog->getType() == Program::TYPE_FRAGMENT)
2876
         exportOutputs();
2877
      if (info->io.genUserClip > 0)
2878
         handleUserClipPlanes();
2879
      mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
2880
   }
2881
      break;
2882
   case TGSI_OPCODE_SWITCH:
2883
   case TGSI_OPCODE_CASE:
2884
      ERROR("switch/case opcode encountered, should have been lowered\n");
2885
      abort();
2886
      break;
2887
   case TGSI_OPCODE_LOAD:
2888
      handleLOAD(dst0);
2889
      break;
2890
   case TGSI_OPCODE_STORE:
2891
      handleSTORE();
2892
      break;
2893
   case TGSI_OPCODE_BARRIER:
2894
      geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2895
      geni->fixed = 1;
2896
      geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
2897
      break;
2898
   case TGSI_OPCODE_MFENCE:
2899
   case TGSI_OPCODE_LFENCE:
2900
   case TGSI_OPCODE_SFENCE:
2901
      geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2902
      geni->fixed = 1;
2903
      geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2904
      break;
2905
   case TGSI_OPCODE_ATOMUADD:
2906
   case TGSI_OPCODE_ATOMXCHG:
2907
   case TGSI_OPCODE_ATOMCAS:
2908
   case TGSI_OPCODE_ATOMAND:
2909
   case TGSI_OPCODE_ATOMOR:
2910
   case TGSI_OPCODE_ATOMXOR:
2911
   case TGSI_OPCODE_ATOMUMIN:
2912
   case TGSI_OPCODE_ATOMIMIN:
2913
   case TGSI_OPCODE_ATOMUMAX:
2914
   case TGSI_OPCODE_ATOMIMAX:
2915
      handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
2916
      break;
2917
   case TGSI_OPCODE_IBFE:
2918
   case TGSI_OPCODE_UBFE:
2919
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2920
         src0 = fetchSrc(0, c);
2921
         src1 = fetchSrc(1, c);
2922
         src2 = fetchSrc(2, c);
2923
         mkOp3(OP_INSBF, TYPE_U32, src1, src2, mkImm(0x808), src1);
2924
         mkOp2(OP_EXTBF, dstTy, dst0[c], src0, src1);
2925
      }
2926
      break;
2927
   case TGSI_OPCODE_BFI:
2928
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2929
         src0 = fetchSrc(0, c);
2930
         src1 = fetchSrc(1, c);
2931
         src2 = fetchSrc(2, c);
2932
         src3 = fetchSrc(3, c);
2933
         mkOp3(OP_INSBF, TYPE_U32, src2, src3, mkImm(0x808), src2);
2934
         mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, src2, src0);
2935
      }
2936
      break;
2937
   case TGSI_OPCODE_LSB:
2938
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2939
         src0 = fetchSrc(0, c);
2940
         geni = mkOp2(OP_EXTBF, TYPE_U32, src0, src0, mkImm(0x2000));
2941
         geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
2942
         geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], src0);
2943
         geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
2944
      }
2945
      break;
2946
   case TGSI_OPCODE_IMSB:
2947
   case TGSI_OPCODE_UMSB:
2948
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2949
         src0 = fetchSrc(0, c);
2950
         mkOp1(OP_BFIND, srcTy, dst0[c], src0);
2951
      }
2952
      break;
2953
   case TGSI_OPCODE_BREV:
2954
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2955
         src0 = fetchSrc(0, c);
2956
         geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000));
2957
         geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
2958
      }
2959
      break;
2960
   case TGSI_OPCODE_POPC:
2961
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2962
         src0 = fetchSrc(0, c);
2963
         mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
2964
      }
2965
      break;
2966
   case TGSI_OPCODE_INTERP_CENTROID:
2967
   case TGSI_OPCODE_INTERP_SAMPLE:
2968
   case TGSI_OPCODE_INTERP_OFFSET:
2969
      handleINTERP(dst0);
2970
      break;
2971
   case TGSI_OPCODE_D2I:
2972
   case TGSI_OPCODE_D2U:
2973
   case TGSI_OPCODE_D2F: {
2974
      int pos = 0;
2975
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2976
         Value *dreg = getSSA(8);
2977
         src0 = fetchSrc(0, pos);
2978
         src1 = fetchSrc(0, pos + 1);
2979
         mkOp2(OP_MERGE, TYPE_U64, dreg, src0, src1);
2980
         mkCvt(OP_CVT, dstTy, dst0[c], srcTy, dreg);
2981
         pos += 2;
2982
      }
2983
      break;
2984
   }
2985
   case TGSI_OPCODE_I2D:
2986
   case TGSI_OPCODE_U2D:
2987
   case TGSI_OPCODE_F2D:
2988
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2989
         Value *dreg = getSSA(8);
2990
         mkCvt(OP_CVT, dstTy, dreg, srcTy, fetchSrc(0, c / 2));
2991
         mkSplit(&dst0[c], 4, dreg);
2992
         c++;
2993
      }
2994
      break;
2995
   case TGSI_OPCODE_DABS:
2996
   case TGSI_OPCODE_DNEG:
2997
   case TGSI_OPCODE_DRCP:
2998
   case TGSI_OPCODE_DSQRT:
2999
   case TGSI_OPCODE_DRSQ:
3000
   case TGSI_OPCODE_DTRUNC:
3001
   case TGSI_OPCODE_DCEIL:
3002
   case TGSI_OPCODE_DFLR:
3003
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3004
         src0 = getSSA(8);
3005
         Value *dst = getSSA(8), *tmp[2];
3006
         tmp[0] = fetchSrc(0, c);
3007
         tmp[1] = fetchSrc(0, c + 1);
3008
         mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3009
         mkOp1(op, dstTy, dst, src0);
3010
         mkSplit(&dst0[c], 4, dst);
3011
         c++;
3012
      }
3013
      break;
3014
   case TGSI_OPCODE_DFRAC:
3015
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3016
         src0 = getSSA(8);
3017
         Value *dst = getSSA(8), *tmp[2];
3018
         tmp[0] = fetchSrc(0, c);
3019
         tmp[1] = fetchSrc(0, c + 1);
3020
         mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3021
         mkOp1(OP_FLOOR, TYPE_F64, dst, src0);
3022
         mkOp2(OP_SUB, TYPE_F64, dst, src0, dst);
3023
         mkSplit(&dst0[c], 4, dst);
3024
         c++;
3025
      }
3026
      break;
3027
   case TGSI_OPCODE_DSLT:
3028
   case TGSI_OPCODE_DSGE:
3029
   case TGSI_OPCODE_DSEQ:
3030
   case TGSI_OPCODE_DSNE: {
3031
      int pos = 0;
3032
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3033
         Value *tmp[2];
3034
 
3035
         src0 = getSSA(8);
3036
         src1 = getSSA(8);
3037
         tmp[0] = fetchSrc(0, pos);
3038
         tmp[1] = fetchSrc(0, pos + 1);
3039
         mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3040
         tmp[0] = fetchSrc(1, pos);
3041
         tmp[1] = fetchSrc(1, pos + 1);
3042
         mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3043
         mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3044
         pos += 2;
3045
      }
3046
      break;
3047
   }
3048
   case TGSI_OPCODE_DADD:
3049
   case TGSI_OPCODE_DMUL:
3050
   case TGSI_OPCODE_DMAX:
3051
   case TGSI_OPCODE_DMIN:
3052
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3053
         src0 = getSSA(8);
3054
         src1 = getSSA(8);
3055
         Value *dst = getSSA(8), *tmp[2];
3056
         tmp[0] = fetchSrc(0, c);
3057
         tmp[1] = fetchSrc(0, c + 1);
3058
         mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3059
         tmp[0] = fetchSrc(1, c);
3060
         tmp[1] = fetchSrc(1, c + 1);
3061
         mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3062
         mkOp2(op, dstTy, dst, src0, src1);
3063
         mkSplit(&dst0[c], 4, dst);
3064
         c++;
3065
      }
3066
      break;
3067
   case TGSI_OPCODE_DMAD:
3068
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3069
         src0 = getSSA(8);
3070
         src1 = getSSA(8);
3071
         src2 = getSSA(8);
3072
         Value *dst = getSSA(8), *tmp[2];
3073
         tmp[0] = fetchSrc(0, c);
3074
         tmp[1] = fetchSrc(0, c + 1);
3075
         mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3076
         tmp[0] = fetchSrc(1, c);
3077
         tmp[1] = fetchSrc(1, c + 1);
3078
         mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3079
         tmp[0] = fetchSrc(2, c);
3080
         tmp[1] = fetchSrc(2, c + 1);
3081
         mkOp2(OP_MERGE, TYPE_U64, src2, tmp[0], tmp[1]);
3082
         mkOp3(op, dstTy, dst, src0, src1, src2);
3083
         mkSplit(&dst0[c], 4, dst);
3084
         c++;
3085
      }
3086
      break;
3087
   case TGSI_OPCODE_DROUND:
3088
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3089
         src0 = getSSA(8);
3090
         Value *dst = getSSA(8), *tmp[2];
3091
         tmp[0] = fetchSrc(0, c);
3092
         tmp[1] = fetchSrc(0, c + 1);
3093
         mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3094
         mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F64, src0)
3095
         ->rnd = ROUND_NI;
3096
         mkSplit(&dst0[c], 4, dst);
3097
         c++;
3098
      }
3099
      break;
3100
   case TGSI_OPCODE_DSSG:
3101
      FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3102
         src0 = getSSA(8);
3103
         Value *dst = getSSA(8), *dstF32 = getSSA(), *tmp[2];
3104
         tmp[0] = fetchSrc(0, c);
3105
         tmp[1] = fetchSrc(0, c + 1);
3106
         mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3107
 
3108
         val0 = getScratch();
3109
         val1 = getScratch();
3110
         // The zero is wrong here since it's only 32-bit, but it works out in
3111
         // the end since it gets replaced with $r63.
3112
         mkCmp(OP_SET, CC_GT, TYPE_F32, val0, TYPE_F64, src0, zero);
3113
         mkCmp(OP_SET, CC_LT, TYPE_F32, val1, TYPE_F64, src0, zero);
3114
         mkOp2(OP_SUB, TYPE_F32, dstF32, val0, val1);
3115
         mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F32, dstF32);
3116
         mkSplit(&dst0[c], 4, dst);
3117
         c++;
3118
      }
3119
      break;
3120
   default:
3121
      ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
3122
      assert(0);
3123
      break;
3124
   }
3125
 
3126
   if (tgsi.dstCount()) {
3127
      for (c = 0; c < 4; ++c) {
3128
         if (!dst0[c])
3129
            continue;
3130
         if (dst0[c] != rDst0[c])
3131
            mkMov(rDst0[c], dst0[c]);
3132
         storeDst(0, c, rDst0[c]);
3133
      }
3134
   }
3135
   vtxBaseValid = 0;
3136
 
3137
   return true;
3138
}
3139
 
3140
void
3141
Converter::handleUserClipPlanes()
3142
{
3143
   Value *res[8];
3144
   int n, i, c;
3145
 
3146
   for (c = 0; c < 4; ++c) {
3147
      for (i = 0; i < info->io.genUserClip; ++i) {
3148
         Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.ucpCBSlot,
3149
                                TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
3150
         Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
3151
         if (c == 0)
3152
            res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
3153
         else
3154
            mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
3155
      }
3156
   }
3157
 
3158
   const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
3159
 
3160
   for (i = 0; i < info->io.genUserClip; ++i) {
3161
      n = i / 4 + first;
3162
      c = i % 4;
3163
      Symbol *sym =
3164
         mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
3165
      mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
3166
   }
3167
}
3168
 
3169
void
3170
Converter::exportOutputs()
3171
{
3172
   for (unsigned int i = 0; i < info->numOutputs; ++i) {
3173
      for (unsigned int c = 0; c < 4; ++c) {
3174
         if (!oData.exists(sub.cur->values, i, c))
3175
            continue;
3176
         Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
3177
                                info->out[i].slot[c] * 4);
3178
         Value *val = oData.load(sub.cur->values, i, c, NULL);
3179
         if (val)
3180
            mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
3181
      }
3182
   }
3183
}
3184
 
3185
Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
3186
     code(code),
3187
     tgsi(NULL),
3188
     tData(this), aData(this), pData(this), oData(this)
3189
{
3190
   info = code->info;
3191
 
3192
   const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
3193
 
3194
   const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
3195
   const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
3196
   const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
3197
   const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
3198
 
3199
   tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
3200
   pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
3201
   aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
3202
   oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
3203
 
3204
   zero = mkImm((uint32_t)0);
3205
 
3206
   vtxBaseValid = 0;
3207
}
3208
 
3209
Converter::~Converter()
3210
{
3211
}
3212
 
3213
inline const Converter::Location *
3214
Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
3215
{
3216
   ValueMap::l_iterator it = s->values.l.find(v);
3217
   return it == s->values.l.end() ? NULL : &it->second;
3218
}
3219
 
3220
template inline void
3221
Converter::BindArgumentsPass::updateCallArgs(
3222
   Instruction *i, void (Instruction::*setArg)(int, Value *),
3223
   T (Function::*proto))
3224
{
3225
   Function *g = i->asFlow()->target.fn;
3226
   Subroutine *subg = conv.getSubroutine(g);
3227
 
3228
   for (unsigned a = 0; a < (g->*proto).size(); ++a) {
3229
      Value *v = (g->*proto)[a].get();
3230
      const Converter::Location &l = *getValueLocation(subg, v);
3231
      Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
3232
 
3233
      (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
3234
   }
3235
}
3236
 
3237
template inline void
3238
Converter::BindArgumentsPass::updatePrototype(
3239
   BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
3240
{
3241
   (func->*updateSet)();
3242
 
3243
   for (unsigned i = 0; i < set->getSize(); ++i) {
3244
      Value *v = func->getLValue(i);
3245
      const Converter::Location *l = getValueLocation(sub, v);
3246
 
3247
      // only include values with a matching TGSI register
3248
      if (set->test(i) && l && !conv.code->locals.count(*l))
3249
         (func->*proto).push_back(v);
3250
   }
3251
}
3252
 
3253
bool
3254
Converter::BindArgumentsPass::visit(Function *f)
3255
{
3256
   sub = conv.getSubroutine(f);
3257
 
3258
   for (ArrayList::Iterator bi = f->allBBlocks.iterator();
3259
        !bi.end(); bi.next()) {
3260
      for (Instruction *i = BasicBlock::get(bi)->getFirst();
3261
           i; i = i->next) {
3262
         if (i->op == OP_CALL && !i->asFlow()->builtin) {
3263
            updateCallArgs(i, &Instruction::setSrc, &Function::ins);
3264
            updateCallArgs(i, &Instruction::setDef, &Function::outs);
3265
         }
3266
      }
3267
   }
3268
 
3269
   if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
3270
      return true;
3271
   updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
3272
                   &Function::buildLiveSets, &Function::ins);
3273
   updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
3274
                   &Function::buildDefSets, &Function::outs);
3275
 
3276
   return true;
3277
}
3278
 
3279
bool
3280
Converter::run()
3281
{
3282
   BasicBlock *entry = new BasicBlock(prog->main);
3283
   BasicBlock *leave = new BasicBlock(prog->main);
3284
 
3285
   prog->main->setEntry(entry);
3286
   prog->main->setExit(leave);
3287
 
3288
   setPosition(entry, true);
3289
   sub.cur = getSubroutine(prog->main);
3290
 
3291
   if (info->io.genUserClip > 0) {
3292
      for (int c = 0; c < 4; ++c)
3293
         clipVtx[c] = getScratch();
3294
   }
3295
 
3296
   if (prog->getType() == Program::TYPE_FRAGMENT) {
3297
      Symbol *sv = mkSysVal(SV_POSITION, 3);
3298
      fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
3299
      mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
3300
   }
3301
 
3302
   if (info->io.viewportId >= 0)
3303
      viewport = getScratch();
3304
   else
3305
      viewport = NULL;
3306
 
3307
   for (ip = 0; ip < code->scan.num_instructions; ++ip) {
3308
      if (!handleInstruction(&code->insns[ip]))
3309
         return false;
3310
   }
3311
 
3312
   if (!BindArgumentsPass(*this).run(prog))
3313
      return false;
3314
 
3315
   return true;
3316
}
3317
 
3318
} // unnamed namespace
3319
 
3320
namespace nv50_ir {
3321
 
3322
bool
3323
Program::makeFromTGSI(struct nv50_ir_prog_info *info)
3324
{
3325
   tgsi::Source src(info);
3326
   if (!src.scanSource())
3327
      return false;
3328
   tlsSize = info->bin.tlsSpace;
3329
 
3330
   Converter builder(this, &src);
3331
   return builder.run();
3332
}
3333
 
3334
} // namespace nv50_ir